Properties

Label 2-960-5.4-c3-0-52
Degree $2$
Conductor $960$
Sign $0.447 + 0.894i$
Analytic cond. $56.6418$
Root an. cond. $7.52607$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s + (10 − 5i)5-s − 10i·7-s − 9·9-s + 46·11-s + 34i·13-s + (−15 − 30i)15-s − 66i·17-s + 104·19-s − 30·21-s + 164i·23-s + (75 − 100i)25-s + 27i·27-s + 224·29-s − 72·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.894 − 0.447i)5-s − 0.539i·7-s − 0.333·9-s + 1.26·11-s + 0.725i·13-s + (−0.258 − 0.516i)15-s − 0.941i·17-s + 1.25·19-s − 0.311·21-s + 1.48i·23-s + (0.599 − 0.800i)25-s + 0.192i·27-s + 1.43·29-s − 0.417·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(56.6418\)
Root analytic conductor: \(7.52607\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{960} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :3/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.923229534\)
\(L(\frac12)\) \(\approx\) \(2.923229534\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3iT \)
5 \( 1 + (-10 + 5i)T \)
good7 \( 1 + 10iT - 343T^{2} \)
11 \( 1 - 46T + 1.33e3T^{2} \)
13 \( 1 - 34iT - 2.19e3T^{2} \)
17 \( 1 + 66iT - 4.91e3T^{2} \)
19 \( 1 - 104T + 6.85e3T^{2} \)
23 \( 1 - 164iT - 1.21e4T^{2} \)
29 \( 1 - 224T + 2.43e4T^{2} \)
31 \( 1 + 72T + 2.97e4T^{2} \)
37 \( 1 + 22iT - 5.06e4T^{2} \)
41 \( 1 - 194T + 6.89e4T^{2} \)
43 \( 1 + 108iT - 7.95e4T^{2} \)
47 \( 1 - 480iT - 1.03e5T^{2} \)
53 \( 1 + 286iT - 1.48e5T^{2} \)
59 \( 1 - 426T + 2.05e5T^{2} \)
61 \( 1 + 698T + 2.26e5T^{2} \)
67 \( 1 - 328iT - 3.00e5T^{2} \)
71 \( 1 - 188T + 3.57e5T^{2} \)
73 \( 1 + 740iT - 3.89e5T^{2} \)
79 \( 1 + 1.16e3T + 4.93e5T^{2} \)
83 \( 1 + 412iT - 5.71e5T^{2} \)
89 \( 1 + 1.20e3T + 7.04e5T^{2} \)
97 \( 1 - 1.38e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.359856705317194039034172823374, −8.929821366979139158928071203640, −7.62817311571429252907055490275, −6.96046497984652316455803950632, −6.13924826458358244956256096774, −5.22474665674629472980698275071, −4.19129528310316115391884909280, −2.94929778838952601883422259703, −1.59800947319570399613448394829, −0.923918485388704903815822943164, 1.10666592587872645003552225731, 2.44913665195479619226571796935, 3.37420412480245023801702835326, 4.50991321428618044809814007283, 5.60250513752206878391347172866, 6.19671970509778178056173638606, 7.09181458801760521619867815219, 8.420437932161266074418861757186, 8.998086635960919481911835006963, 9.902919696566186985700016688188

Graph of the $Z$-function along the critical line