L(s) = 1 | + 1.23·5-s − 7-s + 5.23·11-s − 0.763·13-s − 7.23·17-s + 19-s + 3.23·23-s − 3.47·25-s − 8.47·29-s + 0.472·31-s − 1.23·35-s + 8.94·37-s − 2·41-s − 4·43-s + 6.47·47-s + 49-s + 0.472·53-s + 6.47·55-s + 8·59-s + 8.47·61-s − 0.944·65-s + 0.763·67-s + 1.52·71-s + 4.47·73-s − 5.23·77-s + 15.7·79-s − 2·83-s + ⋯ |
L(s) = 1 | + 0.552·5-s − 0.377·7-s + 1.57·11-s − 0.211·13-s − 1.75·17-s + 0.229·19-s + 0.674·23-s − 0.694·25-s − 1.57·29-s + 0.0847·31-s − 0.208·35-s + 1.47·37-s − 0.312·41-s − 0.609·43-s + 0.944·47-s + 0.142·49-s + 0.0648·53-s + 0.872·55-s + 1.04·59-s + 1.08·61-s − 0.117·65-s + 0.0933·67-s + 0.181·71-s + 0.523·73-s − 0.596·77-s + 1.76·79-s − 0.219·83-s + ⋯ |
Λ(s)=(=(9576s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9576s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.194295092 |
L(21) |
≈ |
2.194295092 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1−T |
good | 5 | 1−1.23T+5T2 |
| 11 | 1−5.23T+11T2 |
| 13 | 1+0.763T+13T2 |
| 17 | 1+7.23T+17T2 |
| 23 | 1−3.23T+23T2 |
| 29 | 1+8.47T+29T2 |
| 31 | 1−0.472T+31T2 |
| 37 | 1−8.94T+37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1−6.47T+47T2 |
| 53 | 1−0.472T+53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1−8.47T+61T2 |
| 67 | 1−0.763T+67T2 |
| 71 | 1−1.52T+71T2 |
| 73 | 1−4.47T+73T2 |
| 79 | 1−15.7T+79T2 |
| 83 | 1+2T+83T2 |
| 89 | 1−10.9T+89T2 |
| 97 | 1−1.23T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.55695829701518011535743341331, −6.84158340841337677529916553504, −6.42050509685313391210844701869, −5.76824538076009081581471509434, −4.92582765674797315601368394393, −4.08577905614069686340656597051, −3.59705079604356304886173667533, −2.42948670189715872435204141802, −1.84007508218933729871461112504, −0.70503064142347803198283574142,
0.70503064142347803198283574142, 1.84007508218933729871461112504, 2.42948670189715872435204141802, 3.59705079604356304886173667533, 4.08577905614069686340656597051, 4.92582765674797315601368394393, 5.76824538076009081581471509434, 6.42050509685313391210844701869, 6.84158340841337677529916553504, 7.55695829701518011535743341331