Properties

Label 2-9576-1.1-c1-0-104
Degree $2$
Conductor $9576$
Sign $-1$
Analytic cond. $76.4647$
Root an. cond. $8.74441$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s − 1.30·11-s + 3.60·13-s − 5.30·17-s + 19-s + 7.60·23-s − 4·25-s + 0.697·29-s − 4.69·31-s − 35-s − 3.60·37-s + 3.30·41-s − 7.21·43-s + 0.394·47-s + 49-s − 6.90·53-s − 1.30·55-s + 1.60·59-s − 6.21·61-s + 3.60·65-s − 0.0916·67-s + 12.8·71-s + 4.90·73-s + 1.30·77-s − 14·79-s − 7.51·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s − 0.392·11-s + 1.00·13-s − 1.28·17-s + 0.229·19-s + 1.58·23-s − 0.800·25-s + 0.129·29-s − 0.843·31-s − 0.169·35-s − 0.592·37-s + 0.515·41-s − 1.09·43-s + 0.0575·47-s + 0.142·49-s − 0.948·53-s − 0.175·55-s + 0.209·59-s − 0.795·61-s + 0.447·65-s − 0.0111·67-s + 1.52·71-s + 0.574·73-s + 0.148·77-s − 1.57·79-s − 0.824·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9576\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(76.4647\)
Root analytic conductor: \(8.74441\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9576,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 - T + 5T^{2} \)
11 \( 1 + 1.30T + 11T^{2} \)
13 \( 1 - 3.60T + 13T^{2} \)
17 \( 1 + 5.30T + 17T^{2} \)
23 \( 1 - 7.60T + 23T^{2} \)
29 \( 1 - 0.697T + 29T^{2} \)
31 \( 1 + 4.69T + 31T^{2} \)
37 \( 1 + 3.60T + 37T^{2} \)
41 \( 1 - 3.30T + 41T^{2} \)
43 \( 1 + 7.21T + 43T^{2} \)
47 \( 1 - 0.394T + 47T^{2} \)
53 \( 1 + 6.90T + 53T^{2} \)
59 \( 1 - 1.60T + 59T^{2} \)
61 \( 1 + 6.21T + 61T^{2} \)
67 \( 1 + 0.0916T + 67T^{2} \)
71 \( 1 - 12.8T + 71T^{2} \)
73 \( 1 - 4.90T + 73T^{2} \)
79 \( 1 + 14T + 79T^{2} \)
83 \( 1 + 7.51T + 83T^{2} \)
89 \( 1 - 7.81T + 89T^{2} \)
97 \( 1 + 4.81T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.19054524223103678107597163486, −6.68324536357205240430201925708, −6.01296835659468474592498428011, −5.34133344286343828268205149554, −4.62784896402695750351576166627, −3.73922481929958398787677790064, −3.04905394863737767405049431209, −2.16652981285852268534514010607, −1.28931383978205027998475117348, 0, 1.28931383978205027998475117348, 2.16652981285852268534514010607, 3.04905394863737767405049431209, 3.73922481929958398787677790064, 4.62784896402695750351576166627, 5.34133344286343828268205149554, 6.01296835659468474592498428011, 6.68324536357205240430201925708, 7.19054524223103678107597163486

Graph of the $Z$-function along the critical line