Properties

Label 2-950-1.1-c1-0-18
Degree $2$
Conductor $950$
Sign $1$
Analytic cond. $7.58578$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 4-s − 3·6-s + 5·7-s − 8-s + 6·9-s − 4·11-s + 3·12-s + 13-s − 5·14-s + 16-s + 3·17-s − 6·18-s + 19-s + 15·21-s + 4·22-s − 7·23-s − 3·24-s − 26-s + 9·27-s + 5·28-s − 3·29-s − 2·31-s − 32-s − 12·33-s − 3·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s + 1.88·7-s − 0.353·8-s + 2·9-s − 1.20·11-s + 0.866·12-s + 0.277·13-s − 1.33·14-s + 1/4·16-s + 0.727·17-s − 1.41·18-s + 0.229·19-s + 3.27·21-s + 0.852·22-s − 1.45·23-s − 0.612·24-s − 0.196·26-s + 1.73·27-s + 0.944·28-s − 0.557·29-s − 0.359·31-s − 0.176·32-s − 2.08·33-s − 0.514·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(7.58578\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.439650405\)
\(L(\frac12)\) \(\approx\) \(2.439650405\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \)
7 \( 1 - 5 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 13 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 10 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.976858889227114824891335123219, −8.920485942669728815604036529685, −8.301058617244315182063927960266, −7.80203381755481970407982696068, −7.37288434104770513673343989750, −5.66402186780550341225871252054, −4.58979652776477679003498012022, −3.44171251094378542463371483956, −2.28599476561718030727276453764, −1.57691270891887807421558967069, 1.57691270891887807421558967069, 2.28599476561718030727276453764, 3.44171251094378542463371483956, 4.58979652776477679003498012022, 5.66402186780550341225871252054, 7.37288434104770513673343989750, 7.80203381755481970407982696068, 8.301058617244315182063927960266, 8.920485942669728815604036529685, 9.976858889227114824891335123219

Graph of the $Z$-function along the critical line