L(s) = 1 | − 2-s + 3·3-s + 4-s − 3·6-s + 5·7-s − 8-s + 6·9-s − 4·11-s + 3·12-s + 13-s − 5·14-s + 16-s + 3·17-s − 6·18-s + 19-s + 15·21-s + 4·22-s − 7·23-s − 3·24-s − 26-s + 9·27-s + 5·28-s − 3·29-s − 2·31-s − 32-s − 12·33-s − 3·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s + 1.88·7-s − 0.353·8-s + 2·9-s − 1.20·11-s + 0.866·12-s + 0.277·13-s − 1.33·14-s + 1/4·16-s + 0.727·17-s − 1.41·18-s + 0.229·19-s + 3.27·21-s + 0.852·22-s − 1.45·23-s − 0.612·24-s − 0.196·26-s + 1.73·27-s + 0.944·28-s − 0.557·29-s − 0.359·31-s − 0.176·32-s − 2.08·33-s − 0.514·34-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.439650405 |
L(21) |
≈ |
2.439650405 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−pT+pT2 |
| 7 | 1−5T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1−3T+pT2 |
| 23 | 1+7T+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−13T+pT2 |
| 59 | 1+9T+pT2 |
| 61 | 1+12T+pT2 |
| 67 | 1−3T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1+2T+pT2 |
| 83 | 1−10T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.976858889227114824891335123219, −8.920485942669728815604036529685, −8.301058617244315182063927960266, −7.80203381755481970407982696068, −7.37288434104770513673343989750, −5.66402186780550341225871252054, −4.58979652776477679003498012022, −3.44171251094378542463371483956, −2.28599476561718030727276453764, −1.57691270891887807421558967069,
1.57691270891887807421558967069, 2.28599476561718030727276453764, 3.44171251094378542463371483956, 4.58979652776477679003498012022, 5.66402186780550341225871252054, 7.37288434104770513673343989750, 7.80203381755481970407982696068, 8.301058617244315182063927960266, 8.920485942669728815604036529685, 9.976858889227114824891335123219