L(s) = 1 | − 2-s + 3.03·3-s + 4-s − 3.03·6-s − 2.46·7-s − 8-s + 6.19·9-s + 0.728·11-s + 3.03·12-s + 6.23·13-s + 2.46·14-s + 16-s − 0.563·17-s − 6.19·18-s − 19-s − 7.49·21-s − 0.728·22-s − 4.63·23-s − 3.03·24-s − 6.23·26-s + 9.70·27-s − 2.46·28-s + 10.2·29-s + 6.06·31-s − 32-s + 2.21·33-s + 0.563·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.75·3-s + 0.5·4-s − 1.23·6-s − 0.933·7-s − 0.353·8-s + 2.06·9-s + 0.219·11-s + 0.875·12-s + 1.72·13-s + 0.660·14-s + 0.250·16-s − 0.136·17-s − 1.46·18-s − 0.229·19-s − 1.63·21-s − 0.155·22-s − 0.966·23-s − 0.619·24-s − 1.22·26-s + 1.86·27-s − 0.466·28-s + 1.89·29-s + 1.08·31-s − 0.176·32-s + 0.384·33-s + 0.0965·34-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.104356165 |
L(21) |
≈ |
2.104356165 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1−3.03T+3T2 |
| 7 | 1+2.46T+7T2 |
| 11 | 1−0.728T+11T2 |
| 13 | 1−6.23T+13T2 |
| 17 | 1+0.563T+17T2 |
| 23 | 1+4.63T+23T2 |
| 29 | 1−10.2T+29T2 |
| 31 | 1−6.06T+31T2 |
| 37 | 1−5.72T+37T2 |
| 41 | 1−4.79T+41T2 |
| 43 | 1+8.06T+43T2 |
| 47 | 1+8.12T+47T2 |
| 53 | 1−1.53T+53T2 |
| 59 | 1+5.76T+59T2 |
| 61 | 1−10.9T+61T2 |
| 67 | 1+12.9T+67T2 |
| 71 | 1+4.39T+71T2 |
| 73 | 1−4.09T+73T2 |
| 79 | 1−15.3T+79T2 |
| 83 | 1+7.85T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+11.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.839291150335701093194524665266, −9.105715558906536678433583184720, −8.343265806475094067947076399705, −8.031710433744774355856835215129, −6.71419546895230966046710993368, −6.23488625279696781589515800554, −4.28496907792576111862592985338, −3.39413889247916756875369629856, −2.63166424789398613292078802838, −1.32777611572376336861192585493,
1.32777611572376336861192585493, 2.63166424789398613292078802838, 3.39413889247916756875369629856, 4.28496907792576111862592985338, 6.23488625279696781589515800554, 6.71419546895230966046710993368, 8.031710433744774355856835215129, 8.343265806475094067947076399705, 9.105715558906536678433583184720, 9.839291150335701093194524665266