L(s) = 1 | + 5-s − 13-s + 6·17-s − 4·23-s + 25-s + 10·29-s − 6·37-s − 2·41-s + 4·43-s − 7·49-s + 6·53-s + 6·61-s − 65-s − 4·67-s + 16·71-s − 2·73-s + 4·83-s + 6·85-s + 6·89-s + 14·97-s − 6·101-s − 12·103-s − 4·107-s − 14·109-s − 10·113-s − 4·115-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.277·13-s + 1.45·17-s − 0.834·23-s + 1/5·25-s + 1.85·29-s − 0.986·37-s − 0.312·41-s + 0.609·43-s − 49-s + 0.824·53-s + 0.768·61-s − 0.124·65-s − 0.488·67-s + 1.89·71-s − 0.234·73-s + 0.439·83-s + 0.650·85-s + 0.635·89-s + 1.42·97-s − 0.597·101-s − 1.18·103-s − 0.386·107-s − 1.34·109-s − 0.940·113-s − 0.373·115-s + ⋯ |
Λ(s)=(=(9360s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9360s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.351259045 |
L(21) |
≈ |
2.351259045 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 13 | 1+T |
good | 7 | 1+pT2 |
| 11 | 1+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−10T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−6T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−16T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.86024313710614696532097430664, −6.90823153056793002056497471386, −6.41051413056067833990175014344, −5.55860505151888914144681124469, −5.10592887722971602042874207321, −4.20725491653826331663773790383, −3.38062750090213723463354695459, −2.63741599748730669205673807869, −1.71741878316152659310548007340, −0.75375237820186639289019479057,
0.75375237820186639289019479057, 1.71741878316152659310548007340, 2.63741599748730669205673807869, 3.38062750090213723463354695459, 4.20725491653826331663773790383, 5.10592887722971602042874207321, 5.55860505151888914144681124469, 6.41051413056067833990175014344, 6.90823153056793002056497471386, 7.86024313710614696532097430664