L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.939 − 0.342i)3-s + (−0.499 − 0.866i)4-s + (−0.939 − 1.62i)5-s + (−0.766 + 0.642i)6-s + (0.766 − 1.32i)7-s − 0.999·8-s + (0.766 + 0.642i)9-s − 1.87·10-s + (0.173 + 0.984i)12-s + (0.5 + 0.866i)13-s + (−0.766 − 1.32i)14-s + (0.326 + 1.85i)15-s + (−0.5 + 0.866i)16-s + 0.347·17-s + (0.939 − 0.342i)18-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.939 − 0.342i)3-s + (−0.499 − 0.866i)4-s + (−0.939 − 1.62i)5-s + (−0.766 + 0.642i)6-s + (0.766 − 1.32i)7-s − 0.999·8-s + (0.766 + 0.642i)9-s − 1.87·10-s + (0.173 + 0.984i)12-s + (0.5 + 0.866i)13-s + (−0.766 − 1.32i)14-s + (0.326 + 1.85i)15-s + (−0.5 + 0.866i)16-s + 0.347·17-s + (0.939 − 0.342i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7829343604\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7829343604\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.939 + 0.342i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - 0.347T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.87T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 1.53T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02782675169778156711596192984, −9.093351848925111507215819413577, −8.074066293817962184505618455251, −7.36124775210213413333693858939, −6.05556395039115037978779643388, −5.04695070286142868900705522910, −4.35977116882146584676650800872, −3.95458874986993422995310947962, −1.60847339490165730302078584053, −0.808987503715386013813398570999,
2.78134904341040723476938841467, 3.68272497921005082119791578492, 4.74663196531483022735762890125, 5.74506797436249392240218799845, 6.24658725340448499263793813613, 7.26613880254717461187080447691, 7.913120655193262072471962135528, 8.820180092726780767349870938092, 10.04387495777905148489653397552, 10.99255384678648843832044051747