| L(s) = 1 | + (−1.06 + 1.36i)3-s + (0.662 + 1.14i)5-s + (0.798 − 1.38i)7-s + (−0.736 − 2.90i)9-s + (2.97 − 5.14i)11-s + (−0.5 − 0.866i)13-s + (−2.27 − 0.315i)15-s − 4.63·17-s − 5.56·19-s + (1.04 + 2.56i)21-s + (−2.13 − 3.69i)23-s + (1.62 − 2.81i)25-s + (4.75 + 2.08i)27-s + (0.256 − 0.444i)29-s + (−4.53 − 7.85i)31-s + ⋯ |
| L(s) = 1 | + (−0.614 + 0.789i)3-s + (0.296 + 0.513i)5-s + (0.301 − 0.522i)7-s + (−0.245 − 0.969i)9-s + (0.896 − 1.55i)11-s + (−0.138 − 0.240i)13-s + (−0.586 − 0.0813i)15-s − 1.12·17-s − 1.27·19-s + (0.227 + 0.559i)21-s + (−0.444 − 0.769i)23-s + (0.324 − 0.562i)25-s + (0.915 + 0.401i)27-s + (0.0476 − 0.0825i)29-s + (−0.814 − 1.41i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.562 + 0.826i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.932368 - 0.493508i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.932368 - 0.493508i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.06 - 1.36i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| good | 5 | \( 1 + (-0.662 - 1.14i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.798 + 1.38i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.97 + 5.14i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 4.63T + 17T^{2} \) |
| 19 | \( 1 + 5.56T + 19T^{2} \) |
| 23 | \( 1 + (2.13 + 3.69i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.256 + 0.444i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.53 + 7.85i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.53T + 37T^{2} \) |
| 41 | \( 1 + (-3.29 - 5.71i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.10 + 5.37i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.15 + 10.6i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 12.9T + 53T^{2} \) |
| 59 | \( 1 + (-6.13 - 10.6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.99 - 6.91i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.29 + 9.17i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.26T + 71T^{2} \) |
| 73 | \( 1 + 7.18T + 73T^{2} \) |
| 79 | \( 1 + (6.24 - 10.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.20 + 14.2i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 2.38T + 89T^{2} \) |
| 97 | \( 1 + (0.100 - 0.174i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34883550302207327936407034501, −8.941841401608539207015325751033, −8.651813437225516842122307846148, −7.18170107730609457306295863034, −6.24665830500748801070129272797, −5.81645976733113332036178776944, −4.37583195455343830670492586958, −3.87452791774077024717427744890, −2.48992616786068114104644301471, −0.53756610497582452961131555863,
1.56740930325394201464042244166, 2.22079824113955840580666246497, 4.21593382905361811350583984671, 4.97893854296286148740281215349, 5.91973378346278822145357778110, 6.85379143241313817253998580958, 7.39694252364593955416571233485, 8.706324831292124916987304200091, 9.121968655390746568119361334476, 10.26779897097082981295249085458