L(s) = 1 | + (1 + i)2-s + 2i·4-s + 3i·5-s + 3·7-s + (−2 + 2i)8-s + (−3 + 3i)10-s − i·13-s + (3 + 3i)14-s − 4·16-s + 7·17-s + 4i·19-s − 6·20-s − 4·23-s − 4·25-s + (1 − i)26-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + i·4-s + 1.34i·5-s + 1.13·7-s + (−0.707 + 0.707i)8-s + (−0.948 + 0.948i)10-s − 0.277i·13-s + (0.801 + 0.801i)14-s − 16-s + 1.69·17-s + 0.917i·19-s − 1.34·20-s − 0.834·23-s − 0.800·25-s + (0.196 − 0.196i)26-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.707−0.707i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(469,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), −0.707−0.707i)
|
Particular Values
L(1) |
≈ |
0.953463+2.30186i |
L(21) |
≈ |
0.953463+2.30186i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1−i)T |
| 3 | 1 |
| 13 | 1+iT |
good | 5 | 1−3iT−5T2 |
| 7 | 1−3T+7T2 |
| 11 | 1−11T2 |
| 17 | 1−7T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+4iT−29T2 |
| 31 | 1+8T+31T2 |
| 37 | 1+7iT−37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−iT−43T2 |
| 47 | 1−7T+47T2 |
| 53 | 1−4iT−53T2 |
| 59 | 1+14iT−59T2 |
| 61 | 1−10iT−61T2 |
| 67 | 1+2iT−67T2 |
| 71 | 1−3T+71T2 |
| 73 | 1−14T+73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1−14iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54879325857465538070230369061, −9.568344033548428929447615449757, −8.189352302905368400678882268362, −7.74795126446030632420585194532, −7.04750305861168250111128132207, −5.90549497669378764643639949139, −5.41375683031812336635310272242, −4.06336662775372832913137138087, −3.30337636812120140812732157124, −2.07875543361596919789728301552,
1.01251428109686507359472261915, 1.91542847886084698137045959320, 3.45500436521338596356623048772, 4.54168481132733101164581341578, 5.12351612177070882626560888552, 5.80182269904285993340750573937, 7.23009806150085706545676071888, 8.256892312600616901149994718986, 9.002976634679524268556987485372, 9.810929708715935350486376354643