L(s) = 1 | + (1.31 − 1.12i)3-s + (0.766 + 1.32i)5-s − 3.51·7-s + (0.456 − 2.96i)9-s + (−3.19 − 5.53i)11-s + (−3.46 + 1.00i)13-s + (2.50 + 0.881i)15-s + (−0.550 − 0.953i)17-s + (−1.13 − 1.97i)19-s + (−4.62 + 3.96i)21-s − 3.32·23-s + (1.32 − 2.29i)25-s + (−2.74 − 4.41i)27-s + (0.714 + 1.23i)29-s + (−1.93 − 3.35i)31-s + ⋯ |
L(s) = 1 | + (0.759 − 0.651i)3-s + (0.342 + 0.594i)5-s − 1.32·7-s + (0.152 − 0.988i)9-s + (−0.963 − 1.66i)11-s + (−0.960 + 0.279i)13-s + (0.647 + 0.227i)15-s + (−0.133 − 0.231i)17-s + (−0.261 − 0.452i)19-s + (−1.00 + 0.864i)21-s − 0.693·23-s + (0.264 − 0.458i)25-s + (−0.527 − 0.849i)27-s + (0.132 + 0.229i)29-s + (−0.347 − 0.602i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.741 + 0.670i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.741 + 0.670i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.383276 - 0.995395i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.383276 - 0.995395i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.31 + 1.12i)T \) |
| 13 | \( 1 + (3.46 - 1.00i)T \) |
good | 5 | \( 1 + (-0.766 - 1.32i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 3.51T + 7T^{2} \) |
| 11 | \( 1 + (3.19 + 5.53i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.550 + 0.953i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.13 + 1.97i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 3.32T + 23T^{2} \) |
| 29 | \( 1 + (-0.714 - 1.23i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.93 + 3.35i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.81 + 3.14i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 11.9T + 41T^{2} \) |
| 43 | \( 1 - 12.5T + 43T^{2} \) |
| 47 | \( 1 + (1.23 - 2.13i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6.18T + 53T^{2} \) |
| 59 | \( 1 + (2.42 - 4.20i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 3.09T + 61T^{2} \) |
| 67 | \( 1 + 7.60T + 67T^{2} \) |
| 71 | \( 1 + (-2.43 - 4.21i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5.40T + 73T^{2} \) |
| 79 | \( 1 + (-2.39 + 4.14i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.19 - 5.53i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.25 - 7.36i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3.52T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.564998085250022783554204557582, −9.023264135665716559474185840474, −7.959715641492360611815938728622, −7.23659449150107604004833407149, −6.30629064941983355984783428372, −5.79009895363937037233255718799, −4.06996460097633242291484424212, −2.81698133063629165187035690839, −2.60918077390696204638208995190, −0.41311794464140060597234835854,
2.08962276181446484388151544178, 2.94320620994195900377913249255, 4.20601102908912950012983445238, 4.94373398073363584322460247964, 5.95023762367628813805644482419, 7.24937285675037737664447393477, 7.81754653788464074456798776906, 8.986368380834824480893961125900, 9.689434430055933638202511665964, 9.992007377915868168781219042887