| L(s) = 1 | + (−0.5 + 0.866i)3-s + (−1.36 − 0.366i)7-s + (−0.499 − 0.866i)9-s + (−1.36 − 0.366i)11-s + (−0.866 − 0.5i)13-s + i·17-s + (−1 − i)19-s + (1 − 0.999i)21-s + (0.866 + 0.5i)23-s + (−0.866 + 0.5i)25-s + 0.999·27-s + (1 − 0.999i)33-s + (1 − i)37-s + (0.866 − 0.499i)39-s + (−1.36 + 0.366i)41-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)3-s + (−1.36 − 0.366i)7-s + (−0.499 − 0.866i)9-s + (−1.36 − 0.366i)11-s + (−0.866 − 0.5i)13-s + i·17-s + (−1 − i)19-s + (1 − 0.999i)21-s + (0.866 + 0.5i)23-s + (−0.866 + 0.5i)25-s + 0.999·27-s + (1 − 0.999i)33-s + (1 − i)37-s + (0.866 − 0.499i)39-s + (−1.36 + 0.366i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.786 + 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.786 + 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05462070289\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.05462070289\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| good | 5 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + (1 + i)T + iT^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + (1 - i)T - iT^{2} \) |
| 97 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.958830476349672910991628675185, −9.409530520325551782667901857259, −8.367254649684904328849264828652, −7.30971694400707788089361549531, −6.34053909065931783032001460845, −5.56907634088591951604589899920, −4.66044480531168502521656369356, −3.53894067762455677607740541711, −2.72446859138517158782270158406, −0.05052041601312060385186691248,
2.19091270186842215233725906227, 2.96153207448637234642334022329, 4.61989787995641170815724929487, 5.53972520148029502310579387445, 6.41291468871899552777797448079, 7.10053378785479131063778362179, 7.906933398337334218983767692278, 8.883649100320035699420022098900, 9.991368691020259145861453317115, 10.37783240027285060604298933651