L(s) = 1 | + (−1.40 − 0.189i)2-s + (1.92 + 0.531i)4-s + (−0.612 − 0.612i)5-s + (−1.94 + 1.94i)7-s + (−2.60 − 1.10i)8-s + (0.741 + 0.973i)10-s + (−0.148 − 0.148i)11-s + (−0.952 + 3.47i)13-s + (3.09 − 2.36i)14-s + (3.43 + 2.04i)16-s − 3.60i·17-s + (1.89 − 1.89i)19-s + (−0.855 − 1.50i)20-s + (0.180 + 0.236i)22-s − 2.04·23-s + ⋯ |
L(s) = 1 | + (−0.990 − 0.133i)2-s + (0.964 + 0.265i)4-s + (−0.273 − 0.273i)5-s + (−0.736 + 0.736i)7-s + (−0.919 − 0.392i)8-s + (0.234 + 0.307i)10-s + (−0.0448 − 0.0448i)11-s + (−0.264 + 0.964i)13-s + (0.828 − 0.630i)14-s + (0.859 + 0.511i)16-s − 0.875i·17-s + (0.434 − 0.434i)19-s + (−0.191 − 0.336i)20-s + (0.0384 + 0.0504i)22-s − 0.426·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.367 + 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.367 + 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.257105 - 0.378116i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.257105 - 0.378116i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 + 0.189i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.952 - 3.47i)T \) |
good | 5 | \( 1 + (0.612 + 0.612i)T + 5iT^{2} \) |
| 7 | \( 1 + (1.94 - 1.94i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.148 + 0.148i)T + 11iT^{2} \) |
| 17 | \( 1 + 3.60iT - 17T^{2} \) |
| 19 | \( 1 + (-1.89 + 1.89i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.04T + 23T^{2} \) |
| 29 | \( 1 + 6.31iT - 29T^{2} \) |
| 31 | \( 1 + (0.261 + 0.261i)T + 31iT^{2} \) |
| 37 | \( 1 + (-1.73 + 1.73i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.454 + 0.454i)T - 41iT^{2} \) |
| 43 | \( 1 + 10.8iT - 43T^{2} \) |
| 47 | \( 1 + (6.24 - 6.24i)T - 47iT^{2} \) |
| 53 | \( 1 + 7.10iT - 53T^{2} \) |
| 59 | \( 1 + (-7.60 - 7.60i)T + 59iT^{2} \) |
| 61 | \( 1 + 5.54iT - 61T^{2} \) |
| 67 | \( 1 + (1.25 - 1.25i)T - 67iT^{2} \) |
| 71 | \( 1 + (7.84 + 7.84i)T + 71iT^{2} \) |
| 73 | \( 1 + (5.73 + 5.73i)T + 73iT^{2} \) |
| 79 | \( 1 + 6.43iT - 79T^{2} \) |
| 83 | \( 1 + (3.01 - 3.01i)T - 83iT^{2} \) |
| 89 | \( 1 + (7.13 + 7.13i)T + 89iT^{2} \) |
| 97 | \( 1 + (-7.21 + 7.21i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.575334035724820542634863343086, −9.136090076408772302657102376104, −8.289741244084157875376077330139, −7.36079803106387233823207683624, −6.56665384111137601964004173410, −5.69628866886378531908299293576, −4.34739269918799659238483440960, −3.03341034932129985234842519642, −2.09843690237454131288852007799, −0.31051396270194781612017455375,
1.28608690575436385126669132507, 2.90547808147104914940738152523, 3.73334517377089723044361172628, 5.34100438776085642297747883726, 6.29761373398339613817993952408, 7.12328956458739813136260805896, 7.79492898792436912546401658919, 8.571461917279975069375121247889, 9.678909406035871901555331145263, 10.17894432760998448419545729098