L(s) = 1 | + (−1 + i)2-s − 2i·4-s + 5-s + 3i·7-s + (2 + 2i)8-s + (−1 + i)10-s + 2·11-s + (3 + 2i)13-s + (−3 − 3i)14-s − 4·16-s − 3·17-s − 2i·20-s + (−2 + 2i)22-s + 6·23-s − 4·25-s + (−5 + i)26-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − i·4-s + 0.447·5-s + 1.13i·7-s + (0.707 + 0.707i)8-s + (−0.316 + 0.316i)10-s + 0.603·11-s + (0.832 + 0.554i)13-s + (−0.801 − 0.801i)14-s − 16-s − 0.727·17-s − 0.447i·20-s + (−0.426 + 0.426i)22-s + 1.25·23-s − 0.800·25-s + (−0.980 + 0.196i)26-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.196−0.980i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(−0.196−0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.196−0.980i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), −0.196−0.980i)
|
Particular Values
L(1) |
≈ |
0.747922+0.912318i |
L(21) |
≈ |
0.747922+0.912318i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 3 | 1 |
| 13 | 1+(−3−2i)T |
good | 5 | 1−T+5T2 |
| 7 | 1−3iT−7T2 |
| 11 | 1−2T+11T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+19T2 |
| 23 | 1−6T+23T2 |
| 29 | 1+6iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+3T+37T2 |
| 41 | 1−10iT−41T2 |
| 43 | 1−9iT−43T2 |
| 47 | 1−7iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−10T+59T2 |
| 61 | 1+10iT−61T2 |
| 67 | 1−12T+67T2 |
| 71 | 1−5iT−71T2 |
| 73 | 1−6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+16T+83T2 |
| 89 | 1+4iT−89T2 |
| 97 | 1−18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.896031036831754310614677895701, −9.318769480271139168092393886138, −8.720224063261848675880045306886, −7.953424199830714189751546535025, −6.69002984096417571674870515759, −6.21658840685772715266108046972, −5.37050853715856357629698359101, −4.28217468648720941394710763754, −2.56668023260271273998744267207, −1.41932102265810360053244028427,
0.77671772229382756802961712828, 1.95342585048035458596849589691, 3.41304881685524990367262677816, 4.07455294406761503892822765197, 5.39988461629087636259830217889, 6.82376974626189334107760792119, 7.21038028289056137379673801635, 8.489778513412188484963770881819, 8.963966574754652868723293127536, 9.992638986484286305177440986783