L(s) = 1 | + (−1 + i)2-s − 2i·4-s + 5-s + 3i·7-s + (2 + 2i)8-s + (−1 + i)10-s + 2·11-s + (3 + 2i)13-s + (−3 − 3i)14-s − 4·16-s − 3·17-s − 2i·20-s + (−2 + 2i)22-s + 6·23-s − 4·25-s + (−5 + i)26-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − i·4-s + 0.447·5-s + 1.13i·7-s + (0.707 + 0.707i)8-s + (−0.316 + 0.316i)10-s + 0.603·11-s + (0.832 + 0.554i)13-s + (−0.801 − 0.801i)14-s − 16-s − 0.727·17-s − 0.447i·20-s + (−0.426 + 0.426i)22-s + 1.25·23-s − 0.800·25-s + (−0.980 + 0.196i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.196 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.196 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.747922 + 0.912318i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.747922 + 0.912318i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3 - 2i)T \) |
good | 5 | \( 1 - T + 5T^{2} \) |
| 7 | \( 1 - 3iT - 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + 6iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 3T + 37T^{2} \) |
| 41 | \( 1 - 10iT - 41T^{2} \) |
| 43 | \( 1 - 9iT - 43T^{2} \) |
| 47 | \( 1 - 7iT - 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 - 10T + 59T^{2} \) |
| 61 | \( 1 + 10iT - 61T^{2} \) |
| 67 | \( 1 - 12T + 67T^{2} \) |
| 71 | \( 1 - 5iT - 71T^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 16T + 83T^{2} \) |
| 89 | \( 1 + 4iT - 89T^{2} \) |
| 97 | \( 1 - 18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.896031036831754310614677895701, −9.318769480271139168092393886138, −8.720224063261848675880045306886, −7.953424199830714189751546535025, −6.69002984096417571674870515759, −6.21658840685772715266108046972, −5.37050853715856357629698359101, −4.28217468648720941394710763754, −2.56668023260271273998744267207, −1.41932102265810360053244028427,
0.77671772229382756802961712828, 1.95342585048035458596849589691, 3.41304881685524990367262677816, 4.07455294406761503892822765197, 5.39988461629087636259830217889, 6.82376974626189334107760792119, 7.21038028289056137379673801635, 8.489778513412188484963770881819, 8.963966574754652868723293127536, 9.992638986484286305177440986783