L(s) = 1 | + (1 + i)2-s + 2i·4-s − 5-s + 3i·7-s + (−2 + 2i)8-s + (−1 − i)10-s − 2·11-s + (−3 − 2i)13-s + (−3 + 3i)14-s − 4·16-s − 3·17-s − 2i·20-s + (−2 − 2i)22-s + 6·23-s − 4·25-s + (−1 − 5i)26-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + i·4-s − 0.447·5-s + 1.13i·7-s + (−0.707 + 0.707i)8-s + (−0.316 − 0.316i)10-s − 0.603·11-s + (−0.832 − 0.554i)13-s + (−0.801 + 0.801i)14-s − 16-s − 0.727·17-s − 0.447i·20-s + (−0.426 − 0.426i)22-s + 1.25·23-s − 0.800·25-s + (−0.196 − 0.980i)26-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.980+0.196i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(−0.980+0.196i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.980+0.196i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), −0.980+0.196i)
|
Particular Values
L(1) |
≈ |
0.116245−1.17396i |
L(21) |
≈ |
0.116245−1.17396i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1−i)T |
| 3 | 1 |
| 13 | 1+(3+2i)T |
good | 5 | 1+T+5T2 |
| 7 | 1−3iT−7T2 |
| 11 | 1+2T+11T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+19T2 |
| 23 | 1−6T+23T2 |
| 29 | 1−6iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1−3T+37T2 |
| 41 | 1−10iT−41T2 |
| 43 | 1+9iT−43T2 |
| 47 | 1−7iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1+10T+59T2 |
| 61 | 1−10iT−61T2 |
| 67 | 1+12T+67T2 |
| 71 | 1−5iT−71T2 |
| 73 | 1−6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1−16T+83T2 |
| 89 | 1+4iT−89T2 |
| 97 | 1−18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65612740236107695790796582103, −9.367058236941436946838956909401, −8.677899163356811975775206407300, −7.83881314973015279409779516984, −7.13176885768600318265574262979, −6.09090916221809287640824532885, −5.25323210754301293279961185377, −4.59174313634459510366590335032, −3.22520343473956141973312925965, −2.43280148417257110668833704133,
0.41005069647730060555325328768, 2.04571798562098403577891944973, 3.23257123115486763657558912311, 4.29353286187484130695075389112, 4.79578636324188286305997361737, 6.05299920579516037395756635088, 7.06301245441252675334246236615, 7.71697366843732888175956990579, 9.051255729462906967283285122444, 9.838685379266236219076443981276