L(s) = 1 | + (0.526 − 1.31i)2-s + (−1.44 − 1.38i)4-s − 0.112·5-s + (0.0378 − 0.0218i)7-s + (−2.57 + 1.16i)8-s + (−0.0592 + 0.147i)10-s + (3.10 − 5.37i)11-s + (−1.35 + 3.34i)13-s + (−0.00874 − 0.0612i)14-s + (0.176 + 3.99i)16-s + (−1.70 − 2.95i)17-s + (−3.27 − 5.66i)19-s + (0.162 + 0.155i)20-s + (−5.41 − 6.90i)22-s + (2.27 − 3.93i)23-s + ⋯ |
L(s) = 1 | + (0.372 − 0.928i)2-s + (−0.722 − 0.691i)4-s − 0.0502·5-s + (0.0143 − 0.00826i)7-s + (−0.910 + 0.412i)8-s + (−0.0187 + 0.0466i)10-s + (0.935 − 1.62i)11-s + (−0.375 + 0.926i)13-s + (−0.00233 − 0.0163i)14-s + (0.0440 + 0.999i)16-s + (−0.413 − 0.716i)17-s + (−0.750 − 1.30i)19-s + (0.0363 + 0.0347i)20-s + (−1.15 − 1.47i)22-s + (0.474 − 0.821i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0540i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0540i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0334001 - 1.23543i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0334001 - 1.23543i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.526 + 1.31i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (1.35 - 3.34i)T \) |
good | 5 | \( 1 + 0.112T + 5T^{2} \) |
| 7 | \( 1 + (-0.0378 + 0.0218i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.10 + 5.37i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.70 + 2.95i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.27 + 5.66i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.27 + 3.93i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.22 + 3.01i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.66iT - 31T^{2} \) |
| 37 | \( 1 + (-5.07 + 8.78i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.01 + 1.16i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (8.02 - 4.63i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 6.65iT - 47T^{2} \) |
| 53 | \( 1 + 11.2iT - 53T^{2} \) |
| 59 | \( 1 + (-1.11 - 1.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.56 + 4.94i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.26 + 3.91i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.64 - 1.52i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 4.71iT - 73T^{2} \) |
| 79 | \( 1 - 8.01T + 79T^{2} \) |
| 83 | \( 1 - 2.86T + 83T^{2} \) |
| 89 | \( 1 + (3.35 + 1.93i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.971 - 0.560i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.521819481099713677808343067234, −9.095780676725868770437409628441, −8.320788899949147386545516858437, −6.82921805862686185067108911303, −6.14804112726493981717816687676, −4.99228750680950526863390424007, −4.14969671924086560988049454197, −3.17487928773878025433446273811, −2.05035912757982380974261388965, −0.50527513267550672768874353832,
1.91652109938828937227987338171, 3.60622326780737646023680164793, 4.29652924176114695416954364679, 5.34415138834829531609497929808, 6.20679876489997571162369266185, 7.08099430149904829772829106018, 7.80473254915528851117620449052, 8.571740928238894508754122543741, 9.692542052848500258333274748796, 10.06001884593948666176325925161