L(s) = 1 | + (1.41 + 0.0601i)2-s + (1.99 + 0.170i)4-s − 0.556i·5-s + (−2.30 − 3.98i)7-s + (2.80 + 0.360i)8-s + (0.0334 − 0.785i)10-s + (1.09 + 0.634i)11-s + (−2.69 − 2.39i)13-s + (−3.01 − 5.77i)14-s + (3.94 + 0.677i)16-s + (−1.16 − 2.01i)17-s + (4.57 − 2.63i)19-s + (0.0945 − 1.10i)20-s + (1.51 + 0.963i)22-s + (0.778 − 1.34i)23-s + ⋯ |
L(s) = 1 | + (0.999 + 0.0425i)2-s + (0.996 + 0.0850i)4-s − 0.248i·5-s + (−0.870 − 1.50i)7-s + (0.991 + 0.127i)8-s + (0.0105 − 0.248i)10-s + (0.331 + 0.191i)11-s + (−0.748 − 0.662i)13-s + (−0.805 − 1.54i)14-s + (0.985 + 0.169i)16-s + (−0.281 − 0.488i)17-s + (1.04 − 0.605i)19-s + (0.0211 − 0.247i)20-s + (0.323 + 0.205i)22-s + (0.162 − 0.281i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.435 + 0.900i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.435 + 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.29456 - 1.43967i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.29456 - 1.43967i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 - 0.0601i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.69 + 2.39i)T \) |
good | 5 | \( 1 + 0.556iT - 5T^{2} \) |
| 7 | \( 1 + (2.30 + 3.98i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.09 - 0.634i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.16 + 2.01i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.57 + 2.63i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.778 + 1.34i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.923 - 0.533i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.00T + 31T^{2} \) |
| 37 | \( 1 + (-2.43 - 1.40i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.44 - 5.97i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.72 + 3.30i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6.29T + 47T^{2} \) |
| 53 | \( 1 - 11.3iT - 53T^{2} \) |
| 59 | \( 1 + (-12.1 + 6.99i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.41 + 1.97i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.16 - 1.25i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.152 + 0.264i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 7.67T + 73T^{2} \) |
| 79 | \( 1 - 8.75T + 79T^{2} \) |
| 83 | \( 1 - 6.78iT - 83T^{2} \) |
| 89 | \( 1 + (6.28 - 10.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.36 - 2.36i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06231768680575216106495646351, −9.295579723928322858958982014722, −7.84156796087404046098845547871, −7.10095208122050178432290314029, −6.64234599716886507451060405053, −5.34223510498457817076833688884, −4.58215001946788592911164025824, −3.60892718266820873288385646225, −2.75140521676788016949786858225, −0.940515043356385886496145483680,
1.95783702520390786548217330994, 2.92265332826005120320157845767, 3.78876963253004572573936777417, 5.11126449834477211236553517307, 5.78355710049625828151004017682, 6.60166475990552575183377827258, 7.34681938669274575744521639385, 8.623243298685826944619446216672, 9.448367481656890932459784175153, 10.22679652545511961551080303938