L(s) = 1 | + (0.0207 + 1.41i)2-s + (−1.99 + 0.0586i)4-s + 0.642·5-s + (0.306 + 0.176i)7-s + (−0.124 − 2.82i)8-s + (0.0133 + 0.908i)10-s + (−1.15 − 2.00i)11-s + (−3.23 + 1.58i)13-s + (−0.243 + 0.437i)14-s + (3.99 − 0.234i)16-s + (−3.34 + 5.79i)17-s + (−1.51 + 2.61i)19-s + (−1.28 + 0.0376i)20-s + (2.80 − 1.67i)22-s + (−0.693 − 1.20i)23-s + ⋯ |
L(s) = 1 | + (0.0146 + 0.999i)2-s + (−0.999 + 0.0293i)4-s + 0.287·5-s + (0.115 + 0.0668i)7-s + (−0.0439 − 0.999i)8-s + (0.00421 + 0.287i)10-s + (−0.348 − 0.604i)11-s + (−0.897 + 0.440i)13-s + (−0.0651 + 0.116i)14-s + (0.998 − 0.0586i)16-s + (−0.811 + 1.40i)17-s + (−0.346 + 0.600i)19-s + (−0.287 + 0.00842i)20-s + (0.598 − 0.357i)22-s + (−0.144 − 0.250i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.883 + 0.468i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.883 + 0.468i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.127201 - 0.511668i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.127201 - 0.511668i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0207 - 1.41i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.23 - 1.58i)T \) |
good | 5 | \( 1 - 0.642T + 5T^{2} \) |
| 7 | \( 1 + (-0.306 - 0.176i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.15 + 2.00i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.34 - 5.79i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.51 - 2.61i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.693 + 1.20i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (5.85 - 3.38i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 7.83iT - 31T^{2} \) |
| 37 | \( 1 + (2.54 + 4.41i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.03 + 4.05i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.0281 + 0.0162i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 12.6iT - 47T^{2} \) |
| 53 | \( 1 + 3.40iT - 53T^{2} \) |
| 59 | \( 1 + (-2.40 + 4.15i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (8.23 + 4.75i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.24 + 3.88i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.35 - 3.08i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 6.24iT - 73T^{2} \) |
| 79 | \( 1 - 7.68T + 79T^{2} \) |
| 83 | \( 1 + 16.7T + 83T^{2} \) |
| 89 | \( 1 + (-1.37 + 0.796i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.29 + 3.05i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39409897281490972064131764555, −9.500433636331111904936055037100, −8.725731015539409838369779539746, −8.016244839111766479783758790923, −7.12997534061687465014011609075, −6.21465498232980937976549023156, −5.54525427047971670095433438864, −4.52117667276213599805821115523, −3.56583459405433226759657440238, −1.90077047471860625480955833384,
0.23237334533815564607567195574, 2.05787523259618107341304278698, 2.76840403261151350969440060835, 4.19428054925455558582106407021, 4.92012929956867339075040478708, 5.84411093601873877178892878052, 7.25083235739049288039879431721, 7.930914864717169214651052636967, 9.164732777888366312499499713066, 9.635377194011944583510147721899