L(s) = 1 | + (1.29 + 0.565i)2-s + (1.35 + 1.46i)4-s + 1.25·5-s + (1.81 + 1.05i)7-s + (0.932 + 2.67i)8-s + (1.63 + 0.712i)10-s + (0.586 + 1.01i)11-s + (−2.36 + 2.71i)13-s + (1.76 + 2.39i)14-s + (−0.303 + 3.98i)16-s + (2.24 − 3.89i)17-s + (−0.575 + 0.997i)19-s + (1.71 + 1.84i)20-s + (0.185 + 1.64i)22-s + (−3.69 − 6.40i)23-s + ⋯ |
L(s) = 1 | + (0.916 + 0.400i)2-s + (0.679 + 0.733i)4-s + 0.563·5-s + (0.687 + 0.397i)7-s + (0.329 + 0.944i)8-s + (0.516 + 0.225i)10-s + (0.176 + 0.306i)11-s + (−0.656 + 0.754i)13-s + (0.471 + 0.638i)14-s + (−0.0757 + 0.997i)16-s + (0.545 − 0.944i)17-s + (−0.132 + 0.228i)19-s + (0.382 + 0.413i)20-s + (0.0395 + 0.351i)22-s + (−0.771 − 1.33i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.65855 + 1.77556i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.65855 + 1.77556i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.29 - 0.565i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.36 - 2.71i)T \) |
good | 5 | \( 1 - 1.25T + 5T^{2} \) |
| 7 | \( 1 + (-1.81 - 1.05i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.586 - 1.01i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.24 + 3.89i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.575 - 0.997i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.69 + 6.40i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.34 + 1.93i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.682iT - 31T^{2} \) |
| 37 | \( 1 + (-4.79 - 8.31i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.84 + 3.95i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.32 - 1.34i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.71iT - 47T^{2} \) |
| 53 | \( 1 + 9.95iT - 53T^{2} \) |
| 59 | \( 1 + (5.00 - 8.67i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.93 + 1.69i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.888 + 1.53i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.05 - 0.609i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 14.0iT - 73T^{2} \) |
| 79 | \( 1 - 2.73T + 79T^{2} \) |
| 83 | \( 1 + 3.16T + 83T^{2} \) |
| 89 | \( 1 + (4.52 - 2.61i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.68 + 3.85i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21313616759118946436538240675, −9.389433565888903828317932656862, −8.319751725584138520086926764380, −7.59121300025005403190969198892, −6.60715553746895412284328284381, −5.87653382295812525315064258023, −4.87671338139395105025378097219, −4.28384066777012866750926670862, −2.76826987602080525966982246854, −1.91235158468991459304485549299,
1.26793529400589888952893568728, 2.39393945263146203256996636881, 3.61276546052918305388684160459, 4.51703165733942634466064985190, 5.61001705357515964970241752457, 6.03142447061502644957703302601, 7.36187604801824282537909812688, 7.990153558275783258444022551553, 9.390074685365379790047898240508, 10.08420650991934056232955031756