L(s) = 1 | + (0.114 + 1.40i)2-s + (−1.97 + 0.323i)4-s + 3.80·5-s + (1.38 + 0.798i)7-s + (−0.683 − 2.74i)8-s + (0.437 + 5.36i)10-s + (−0.318 − 0.550i)11-s + (−0.717 + 3.53i)13-s + (−0.966 + 2.04i)14-s + (3.79 − 1.27i)16-s + (−0.777 + 1.34i)17-s + (3.07 − 5.31i)19-s + (−7.50 + 1.23i)20-s + (0.739 − 0.511i)22-s + (2.48 + 4.30i)23-s + ⋯ |
L(s) = 1 | + (0.0812 + 0.996i)2-s + (−0.986 + 0.161i)4-s + 1.70·5-s + (0.522 + 0.301i)7-s + (−0.241 − 0.970i)8-s + (0.138 + 1.69i)10-s + (−0.0958 − 0.166i)11-s + (−0.199 + 0.979i)13-s + (−0.258 + 0.545i)14-s + (0.947 − 0.319i)16-s + (−0.188 + 0.326i)17-s + (0.704 − 1.21i)19-s + (−1.67 + 0.275i)20-s + (0.157 − 0.109i)22-s + (0.517 + 0.896i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0308 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0308 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46136 + 1.50720i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46136 + 1.50720i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.114 - 1.40i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.717 - 3.53i)T \) |
good | 5 | \( 1 - 3.80T + 5T^{2} \) |
| 7 | \( 1 + (-1.38 - 0.798i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.318 + 0.550i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.777 - 1.34i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.07 + 5.31i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.48 - 4.30i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.48 - 1.43i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.35iT - 31T^{2} \) |
| 37 | \( 1 + (-5.36 - 9.28i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.325 - 0.188i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.61 - 2.66i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 10.6iT - 47T^{2} \) |
| 53 | \( 1 - 12.4iT - 53T^{2} \) |
| 59 | \( 1 + (4.06 - 7.03i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.32 + 3.07i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.10 + 1.91i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (8.08 + 4.66i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2.57iT - 73T^{2} \) |
| 79 | \( 1 - 10.4T + 79T^{2} \) |
| 83 | \( 1 + 13.6T + 83T^{2} \) |
| 89 | \( 1 + (11.1 - 6.42i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.0755 + 0.0436i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.844455762949004649886083460082, −9.322636778989297271620418887376, −8.770524432897363664721121835172, −7.59642681880109892920035290870, −6.73650960613567926184834375466, −5.95193538619083879750861893491, −5.25854153273280046321829620818, −4.45589492516748907947741936160, −2.81947770356916099115595107000, −1.49495325270094095980422978036,
1.15073267515141203366227660628, 2.18494767428429779144653077966, 3.13494993770885295166576539665, 4.54882520545550884455810363889, 5.41227060922740314846039017425, 6.01438859041168954745761402006, 7.43164322954780861547648081426, 8.440809191116285018368789026192, 9.371773851232504589098798800984, 9.933927149034015513165655902857