L(s) = 1 | + 7.29·5-s + 5.87·7-s + 51.1·11-s − 13·13-s + 73.7·17-s + 59.9·19-s − 69.8·23-s − 71.8·25-s + 294.·29-s − 334.·31-s + 42.8·35-s + 261.·37-s − 222.·41-s + 79.2·43-s + 584.·47-s − 308.·49-s − 465.·53-s + 373.·55-s + 530.·59-s + 548.·61-s − 94.7·65-s − 384.·67-s + 307.·71-s − 844.·73-s + 300.·77-s + 30.1·79-s − 19.5·83-s + ⋯ |
L(s) = 1 | + 0.652·5-s + 0.317·7-s + 1.40·11-s − 0.277·13-s + 1.05·17-s + 0.723·19-s − 0.633·23-s − 0.574·25-s + 1.88·29-s − 1.93·31-s + 0.206·35-s + 1.16·37-s − 0.848·41-s + 0.281·43-s + 1.81·47-s − 0.899·49-s − 1.20·53-s + 0.914·55-s + 1.16·59-s + 1.15·61-s − 0.180·65-s − 0.701·67-s + 0.513·71-s − 1.35·73-s + 0.444·77-s + 0.0429·79-s − 0.0258·83-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(936s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.860878075 |
L(21) |
≈ |
2.860878075 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+13T |
good | 5 | 1−7.29T+125T2 |
| 7 | 1−5.87T+343T2 |
| 11 | 1−51.1T+1.33e3T2 |
| 17 | 1−73.7T+4.91e3T2 |
| 19 | 1−59.9T+6.85e3T2 |
| 23 | 1+69.8T+1.21e4T2 |
| 29 | 1−294.T+2.43e4T2 |
| 31 | 1+334.T+2.97e4T2 |
| 37 | 1−261.T+5.06e4T2 |
| 41 | 1+222.T+6.89e4T2 |
| 43 | 1−79.2T+7.95e4T2 |
| 47 | 1−584.T+1.03e5T2 |
| 53 | 1+465.T+1.48e5T2 |
| 59 | 1−530.T+2.05e5T2 |
| 61 | 1−548.T+2.26e5T2 |
| 67 | 1+384.T+3.00e5T2 |
| 71 | 1−307.T+3.57e5T2 |
| 73 | 1+844.T+3.89e5T2 |
| 79 | 1−30.1T+4.93e5T2 |
| 83 | 1+19.5T+5.71e5T2 |
| 89 | 1−513.T+7.04e5T2 |
| 97 | 1−787.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.682769275316558451439543479409, −8.989548486388880517970525139888, −7.986602093722320726290349830754, −7.11642283516373095862941225541, −6.15425401009738511870859127689, −5.43878472926334727798313626109, −4.31517351953994171765573131581, −3.30871327573630775011803171414, −1.96978322746292201857488326676, −0.980845958631757754395181003044,
0.980845958631757754395181003044, 1.96978322746292201857488326676, 3.30871327573630775011803171414, 4.31517351953994171765573131581, 5.43878472926334727798313626109, 6.15425401009738511870859127689, 7.11642283516373095862941225541, 7.986602093722320726290349830754, 8.989548486388880517970525139888, 9.682769275316558451439543479409