L(s) = 1 | − i·2-s + i·3-s − 4-s + (−0.369 + 2.20i)5-s + 6-s − 2i·7-s + i·8-s − 9-s + (2.20 + 0.369i)10-s + 3.26·11-s − i·12-s + 2.73i·13-s − 2·14-s + (−2.20 − 0.369i)15-s + 16-s + 4.93i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + (−0.165 + 0.986i)5-s + 0.408·6-s − 0.755i·7-s + 0.353i·8-s − 0.333·9-s + (0.697 + 0.116i)10-s + 0.983·11-s − 0.288i·12-s + 0.759i·13-s − 0.534·14-s + (−0.569 − 0.0954i)15-s + 0.250·16-s + 1.19i·17-s + ⋯ |
Λ(s)=(=(930s/2ΓC(s)L(s)(0.165−0.986i)Λ(2−s)
Λ(s)=(=(930s/2ΓC(s+1/2)L(s)(0.165−0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
930
= 2⋅3⋅5⋅31
|
Sign: |
0.165−0.986i
|
Analytic conductor: |
7.42608 |
Root analytic conductor: |
2.72508 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ930(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 930, ( :1/2), 0.165−0.986i)
|
Particular Values
L(1) |
≈ |
0.855363+0.723923i |
L(21) |
≈ |
0.855363+0.723923i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1−iT |
| 5 | 1+(0.369−2.20i)T |
| 31 | 1+T |
good | 7 | 1+2iT−7T2 |
| 11 | 1−3.26T+11T2 |
| 13 | 1−2.73iT−13T2 |
| 17 | 1−4.93iT−17T2 |
| 19 | 1+4.93T+19T2 |
| 23 | 1+0.521iT−23T2 |
| 29 | 1+0.521T+29T2 |
| 37 | 1−10.8iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1−8.82iT−43T2 |
| 47 | 1+4.93iT−47T2 |
| 53 | 1−13.3iT−53T2 |
| 59 | 1+9.34T+59T2 |
| 61 | 1+9.75T+61T2 |
| 67 | 1−13.5iT−67T2 |
| 71 | 1−5.56T+71T2 |
| 73 | 1+3.04iT−73T2 |
| 79 | 1−6.41T+79T2 |
| 83 | 1+1.36iT−83T2 |
| 89 | 1−11.8T+89T2 |
| 97 | 1−7.26iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46655825348802805256756301066, −9.641108318083680428172802930666, −8.797063629765069323012637022166, −7.85142825493578631508749918709, −6.70218853915673204038048057002, −6.09406640304293341632189353782, −4.39630658267190707424944343763, −4.02776596307716053345255355874, −2.99862139772311652847097024544, −1.63117750483127575910222366453,
0.53985296122424655334859698180, 2.09185019993051032073452075394, 3.66575857188705674443097216072, 4.82320216324444104996066113937, 5.61558989041235589979453314184, 6.40299417236218662198232875328, 7.41937040255015665357575594626, 8.153636414498025660664739553498, 9.086657328676041685426707427068, 9.278107629284690472144276525425