L(s) = 1 | + i·2-s − i·3-s − 4-s + (−2.23 + 0.0526i)5-s + 6-s + 2i·7-s − i·8-s − 9-s + (−0.0526 − 2.23i)10-s − 0.470·11-s + i·12-s − 6.47i·13-s − 2·14-s + (0.0526 + 2.23i)15-s + 16-s + 7.04i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (−0.999 + 0.0235i)5-s + 0.408·6-s + 0.755i·7-s − 0.353i·8-s − 0.333·9-s + (−0.0166 − 0.706i)10-s − 0.141·11-s + 0.288i·12-s − 1.79i·13-s − 0.534·14-s + (0.0135 + 0.577i)15-s + 0.250·16-s + 1.70i·17-s + ⋯ |
Λ(s)=(=(930s/2ΓC(s)L(s)(0.999−0.0235i)Λ(2−s)
Λ(s)=(=(930s/2ΓC(s+1/2)L(s)(0.999−0.0235i)Λ(1−s)
Degree: |
2 |
Conductor: |
930
= 2⋅3⋅5⋅31
|
Sign: |
0.999−0.0235i
|
Analytic conductor: |
7.42608 |
Root analytic conductor: |
2.72508 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ930(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 930, ( :1/2), 0.999−0.0235i)
|
Particular Values
L(1) |
≈ |
1.15891+0.0136488i |
L(21) |
≈ |
1.15891+0.0136488i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1+iT |
| 5 | 1+(2.23−0.0526i)T |
| 31 | 1+T |
good | 7 | 1−2iT−7T2 |
| 11 | 1+0.470T+11T2 |
| 13 | 1+6.47iT−13T2 |
| 17 | 1−7.04iT−17T2 |
| 19 | 1−7.04T+19T2 |
| 23 | 1+6.94iT−23T2 |
| 29 | 1−6.94T+29T2 |
| 37 | 1+1.78iT−37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1−0.210iT−43T2 |
| 47 | 1+7.04iT−47T2 |
| 53 | 1−3.15iT−53T2 |
| 59 | 1−7.15T+59T2 |
| 61 | 1−11.2T+61T2 |
| 67 | 1+8.26iT−67T2 |
| 71 | 1−0.260T+71T2 |
| 73 | 1+11.8iT−73T2 |
| 79 | 1−1.89T+79T2 |
| 83 | 1−11.7iT−83T2 |
| 89 | 1+12.0T+89T2 |
| 97 | 1+3.52iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12461864792402564012301247190, −8.749850019418616354169742231637, −8.230007075327193991581821151282, −7.70603399963008599449560404552, −6.71097129984658726387873078418, −5.79443270245837435101869813423, −5.05774721293566686167443644511, −3.72840688322061401172338255051, −2.73154872617466493573894720637, −0.75028415678710255794022844439,
1.01461484730051513890731435765, 2.82763970041976481777680247682, 3.76122966367400274574582673828, 4.50416628739632516664040818881, 5.28579331807154264471005186648, 6.97300332411234527161313936242, 7.46318202480501323994333836035, 8.616980038011703230432543684148, 9.489031096826429258656131482698, 9.932713248122373518705156459661