L(s) = 1 | + (0.239 − 0.735i)2-s + (0.309 + 0.951i)3-s + (1.13 + 0.823i)4-s − 1.00·5-s + 0.773·6-s + (0.312 + 0.226i)7-s + (2.12 − 1.54i)8-s + (−0.809 + 0.587i)9-s + (−0.240 + 0.738i)10-s + (−3.14 − 2.28i)11-s + (−0.433 + 1.33i)12-s + (−0.958 − 2.95i)13-s + (0.241 − 0.175i)14-s + (−0.310 − 0.954i)15-s + (0.236 + 0.729i)16-s + (−0.0512 + 0.0372i)17-s + ⋯ |
L(s) = 1 | + (0.169 − 0.520i)2-s + (0.178 + 0.549i)3-s + (0.566 + 0.411i)4-s − 0.449·5-s + 0.315·6-s + (0.118 + 0.0857i)7-s + (0.752 − 0.546i)8-s + (−0.269 + 0.195i)9-s + (−0.0759 + 0.233i)10-s + (−0.947 − 0.688i)11-s + (−0.125 + 0.384i)12-s + (−0.265 − 0.818i)13-s + (0.0645 − 0.0469i)14-s + (−0.0801 − 0.246i)15-s + (0.0592 + 0.182i)16-s + (−0.0124 + 0.00902i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0274i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 93 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0274i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17183 - 0.0160877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17183 - 0.0160877i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 31 | \( 1 + (0.362 - 5.55i)T \) |
good | 2 | \( 1 + (-0.239 + 0.735i)T + (-1.61 - 1.17i)T^{2} \) |
| 5 | \( 1 + 1.00T + 5T^{2} \) |
| 7 | \( 1 + (-0.312 - 0.226i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (3.14 + 2.28i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (0.958 + 2.95i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.0512 - 0.0372i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (0.514 - 1.58i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (2.64 - 1.91i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (-0.788 + 2.42i)T + (-23.4 - 17.0i)T^{2} \) |
| 37 | \( 1 - 7.08T + 37T^{2} \) |
| 41 | \( 1 + (-0.240 + 0.738i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (-3.55 + 10.9i)T + (-34.7 - 25.2i)T^{2} \) |
| 47 | \( 1 + (-3.63 - 11.1i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-4.10 + 2.97i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-4.21 - 12.9i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + 10.0T + 61T^{2} \) |
| 67 | \( 1 - 8.74T + 67T^{2} \) |
| 71 | \( 1 + (6.78 - 4.93i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.07 - 2.95i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (3.77 - 2.74i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (3.29 - 10.1i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (2.09 + 1.52i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (10.7 + 7.78i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.91056554583299398680661824571, −12.83482011917011039192000973701, −11.82913438531817948540650605453, −10.86269374579288553463798465945, −10.05527771065773544050102393684, −8.348962411882504392269406648859, −7.51965886991713277969933811903, −5.66431474920827766043351699356, −3.98354775242182671940521353758, −2.72588631374159526754021139107,
2.25382051081466301735245451376, 4.61042632860311333478667958614, 6.10981911767364964321924248775, 7.28247273565937376651961176116, 8.009021932115818194087776940764, 9.701410350392719540648377228481, 10.98794941642880240632039526671, 11.93193495525807016042883628324, 13.12390292795734473471221010652, 14.21736165366577043053937175395