Properties

Label 2-92e2-1.1-c1-0-183
Degree $2$
Conductor $8464$
Sign $-1$
Analytic cond. $67.5853$
Root an. cond. $8.22103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·3-s − 1.48·5-s − 0.732·7-s − 0.999·9-s + 0.732·11-s + 2.86·13-s − 2.09·15-s + 1.55·17-s + 0.0963·19-s − 1.03·21-s − 2.80·25-s − 5.65·27-s − 6.96·29-s − 0.428·31-s + 1.03·33-s + 1.08·35-s + 7.81·37-s + 4.04·39-s + 2.46·41-s + 11.8·43-s + 1.48·45-s − 11.6·47-s − 6.46·49-s + 2.19·51-s + 10.0·53-s − 1.08·55-s + 0.136·57-s + ⋯
L(s)  = 1  + 0.816·3-s − 0.662·5-s − 0.276·7-s − 0.333·9-s + 0.220·11-s + 0.794·13-s − 0.541·15-s + 0.376·17-s + 0.0221·19-s − 0.225·21-s − 0.560·25-s − 1.08·27-s − 1.29·29-s − 0.0770·31-s + 0.180·33-s + 0.183·35-s + 1.28·37-s + 0.648·39-s + 0.384·41-s + 1.80·43-s + 0.220·45-s − 1.69·47-s − 0.923·49-s + 0.307·51-s + 1.37·53-s − 0.146·55-s + 0.0180·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8464\)    =    \(2^{4} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(67.5853\)
Root analytic conductor: \(8.22103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 - 1.41T + 3T^{2} \)
5 \( 1 + 1.48T + 5T^{2} \)
7 \( 1 + 0.732T + 7T^{2} \)
11 \( 1 - 0.732T + 11T^{2} \)
13 \( 1 - 2.86T + 13T^{2} \)
17 \( 1 - 1.55T + 17T^{2} \)
19 \( 1 - 0.0963T + 19T^{2} \)
29 \( 1 + 6.96T + 29T^{2} \)
31 \( 1 + 0.428T + 31T^{2} \)
37 \( 1 - 7.81T + 37T^{2} \)
41 \( 1 - 2.46T + 41T^{2} \)
43 \( 1 - 11.8T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 - 10.0T + 53T^{2} \)
59 \( 1 + 0.571T + 59T^{2} \)
61 \( 1 - 4.36T + 61T^{2} \)
67 \( 1 + 9.39T + 67T^{2} \)
71 \( 1 - 0.615T + 71T^{2} \)
73 \( 1 + 3.12T + 73T^{2} \)
79 \( 1 - 5.80T + 79T^{2} \)
83 \( 1 + 8.43T + 83T^{2} \)
89 \( 1 + 11.5T + 89T^{2} \)
97 \( 1 + 6.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67034316452453692534272056572, −6.89927527335498121364709746717, −5.97346481766996957647476088510, −5.54739625337777023522828719475, −4.30029401118911711212395110552, −3.81846500166725876021972717806, −3.15196803262690178348692400100, −2.37985082259238084213132853844, −1.30695076192846539133152051762, 0, 1.30695076192846539133152051762, 2.37985082259238084213132853844, 3.15196803262690178348692400100, 3.81846500166725876021972717806, 4.30029401118911711212395110552, 5.54739625337777023522828719475, 5.97346481766996957647476088510, 6.89927527335498121364709746717, 7.67034316452453692534272056572

Graph of the $Z$-function along the critical line