Properties

Label 2-9280-1.1-c1-0-214
Degree $2$
Conductor $9280$
Sign $-1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·3-s + 5-s + 3.85·7-s − 0.381·9-s − 1.23·11-s − 6.09·13-s + 1.61·15-s − 1.38·17-s − 7.23·19-s + 6.23·21-s − 0.854·23-s + 25-s − 5.47·27-s − 29-s + 0.618·31-s − 2.00·33-s + 3.85·35-s − 4.76·37-s − 9.85·39-s + 9.70·41-s + 5.38·43-s − 0.381·45-s − 8·47-s + 7.85·49-s − 2.23·51-s + 6.32·53-s − 1.23·55-s + ⋯
L(s)  = 1  + 0.934·3-s + 0.447·5-s + 1.45·7-s − 0.127·9-s − 0.372·11-s − 1.68·13-s + 0.417·15-s − 0.335·17-s − 1.66·19-s + 1.36·21-s − 0.178·23-s + 0.200·25-s − 1.05·27-s − 0.185·29-s + 0.111·31-s − 0.348·33-s + 0.651·35-s − 0.783·37-s − 1.57·39-s + 1.51·41-s + 0.820·43-s − 0.0569·45-s − 1.16·47-s + 1.12·49-s − 0.313·51-s + 0.868·53-s − 0.166·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 - 1.61T + 3T^{2} \)
7 \( 1 - 3.85T + 7T^{2} \)
11 \( 1 + 1.23T + 11T^{2} \)
13 \( 1 + 6.09T + 13T^{2} \)
17 \( 1 + 1.38T + 17T^{2} \)
19 \( 1 + 7.23T + 19T^{2} \)
23 \( 1 + 0.854T + 23T^{2} \)
31 \( 1 - 0.618T + 31T^{2} \)
37 \( 1 + 4.76T + 37T^{2} \)
41 \( 1 - 9.70T + 41T^{2} \)
43 \( 1 - 5.38T + 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 - 6.32T + 53T^{2} \)
59 \( 1 - 11.6T + 59T^{2} \)
61 \( 1 + 8.85T + 61T^{2} \)
67 \( 1 + 6.47T + 67T^{2} \)
71 \( 1 + 4.94T + 71T^{2} \)
73 \( 1 - 13.0T + 73T^{2} \)
79 \( 1 + 14.0T + 79T^{2} \)
83 \( 1 + 2.29T + 83T^{2} \)
89 \( 1 - 11.7T + 89T^{2} \)
97 \( 1 + 15.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.55206064723423335593254502470, −6.89214496612914423220694980347, −5.89588607269668331921111960380, −5.20932837965744016296418115028, −4.57100548365004783540512273773, −3.94263195039716453567812476071, −2.58686133776375308009105927657, −2.40332193047745199439211773288, −1.59483722820858025670703466595, 0, 1.59483722820858025670703466595, 2.40332193047745199439211773288, 2.58686133776375308009105927657, 3.94263195039716453567812476071, 4.57100548365004783540512273773, 5.20932837965744016296418115028, 5.89588607269668331921111960380, 6.89214496612914423220694980347, 7.55206064723423335593254502470

Graph of the $Z$-function along the critical line