Properties

Label 2-9280-1.1-c1-0-136
Degree $2$
Conductor $9280$
Sign $-1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.918·3-s + 5-s − 0.478·7-s − 2.15·9-s − 4.45·11-s + 3.37·13-s − 0.918·15-s − 7.40·17-s − 2.45·19-s + 0.439·21-s + 7.00·23-s + 25-s + 4.73·27-s + 29-s + 7.65·31-s + 4.08·33-s − 0.478·35-s − 7.79·37-s − 3.09·39-s + 7.12·41-s + 11.9·43-s − 2.15·45-s + 3.24·47-s − 6.77·49-s + 6.80·51-s + 13.2·53-s − 4.45·55-s + ⋯
L(s)  = 1  − 0.530·3-s + 0.447·5-s − 0.180·7-s − 0.718·9-s − 1.34·11-s + 0.935·13-s − 0.237·15-s − 1.79·17-s − 0.562·19-s + 0.0959·21-s + 1.46·23-s + 0.200·25-s + 0.911·27-s + 0.185·29-s + 1.37·31-s + 0.711·33-s − 0.0809·35-s − 1.28·37-s − 0.495·39-s + 1.11·41-s + 1.82·43-s − 0.321·45-s + 0.472·47-s − 0.967·49-s + 0.952·51-s + 1.81·53-s − 0.600·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 + 0.918T + 3T^{2} \)
7 \( 1 + 0.478T + 7T^{2} \)
11 \( 1 + 4.45T + 11T^{2} \)
13 \( 1 - 3.37T + 13T^{2} \)
17 \( 1 + 7.40T + 17T^{2} \)
19 \( 1 + 2.45T + 19T^{2} \)
23 \( 1 - 7.00T + 23T^{2} \)
31 \( 1 - 7.65T + 31T^{2} \)
37 \( 1 + 7.79T + 37T^{2} \)
41 \( 1 - 7.12T + 41T^{2} \)
43 \( 1 - 11.9T + 43T^{2} \)
47 \( 1 - 3.24T + 47T^{2} \)
53 \( 1 - 13.2T + 53T^{2} \)
59 \( 1 - 5.07T + 59T^{2} \)
61 \( 1 + 5.01T + 61T^{2} \)
67 \( 1 - 9.37T + 67T^{2} \)
71 \( 1 + 6.78T + 71T^{2} \)
73 \( 1 + 9.38T + 73T^{2} \)
79 \( 1 + 7.62T + 79T^{2} \)
83 \( 1 - 16.5T + 83T^{2} \)
89 \( 1 + 10.6T + 89T^{2} \)
97 \( 1 + 8.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.22164583224495372366056723537, −6.54783085116247302350429747291, −6.03549087781648645031780682320, −5.34640104208500885279459113092, −4.75721951154435984168413023338, −3.93240333146922059926289263335, −2.67947545681482301698345437623, −2.50804378872110469419386242700, −1.06190947338254059152862627628, 0, 1.06190947338254059152862627628, 2.50804378872110469419386242700, 2.67947545681482301698345437623, 3.93240333146922059926289263335, 4.75721951154435984168413023338, 5.34640104208500885279459113092, 6.03549087781648645031780682320, 6.54783085116247302350429747291, 7.22164583224495372366056723537

Graph of the $Z$-function along the critical line