Properties

Label 2-9280-1.1-c1-0-120
Degree $2$
Conductor $9280$
Sign $1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.50·3-s − 5-s + 3.62·7-s + 3.28·9-s + 4.89·11-s − 3.57·13-s − 2.50·15-s − 3.35·17-s + 5.34·19-s + 9.07·21-s − 0.686·23-s + 25-s + 0.703·27-s − 29-s − 2.61·31-s + 12.2·33-s − 3.62·35-s + 9.72·37-s − 8.96·39-s + 9.24·41-s − 1.35·43-s − 3.28·45-s − 9.30·47-s + 6.12·49-s − 8.40·51-s + 6.87·53-s − 4.89·55-s + ⋯
L(s)  = 1  + 1.44·3-s − 0.447·5-s + 1.36·7-s + 1.09·9-s + 1.47·11-s − 0.992·13-s − 0.647·15-s − 0.812·17-s + 1.22·19-s + 1.98·21-s − 0.143·23-s + 0.200·25-s + 0.135·27-s − 0.185·29-s − 0.468·31-s + 2.13·33-s − 0.612·35-s + 1.59·37-s − 1.43·39-s + 1.44·41-s − 0.206·43-s − 0.489·45-s − 1.35·47-s + 0.875·49-s − 1.17·51-s + 0.944·53-s − 0.659·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.430285789\)
\(L(\frac12)\) \(\approx\) \(4.430285789\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 - 2.50T + 3T^{2} \)
7 \( 1 - 3.62T + 7T^{2} \)
11 \( 1 - 4.89T + 11T^{2} \)
13 \( 1 + 3.57T + 13T^{2} \)
17 \( 1 + 3.35T + 17T^{2} \)
19 \( 1 - 5.34T + 19T^{2} \)
23 \( 1 + 0.686T + 23T^{2} \)
31 \( 1 + 2.61T + 31T^{2} \)
37 \( 1 - 9.72T + 37T^{2} \)
41 \( 1 - 9.24T + 41T^{2} \)
43 \( 1 + 1.35T + 43T^{2} \)
47 \( 1 + 9.30T + 47T^{2} \)
53 \( 1 - 6.87T + 53T^{2} \)
59 \( 1 - 8.20T + 59T^{2} \)
61 \( 1 + 3.12T + 61T^{2} \)
67 \( 1 + 8.13T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 - 8.45T + 73T^{2} \)
79 \( 1 - 13.7T + 79T^{2} \)
83 \( 1 + 0.440T + 83T^{2} \)
89 \( 1 + 2.10T + 89T^{2} \)
97 \( 1 + 17.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85139049954278322225278325179, −7.30388138786923804645060753758, −6.62024079209216770963103334855, −5.52646817500137101309425705982, −4.66384901152172158286527482846, −4.15640892835786435670425711882, −3.47847245290467345890884156009, −2.54703519251766838038129431982, −1.90196469821586092146825128608, −0.998064881509375087906000248550, 0.998064881509375087906000248550, 1.90196469821586092146825128608, 2.54703519251766838038129431982, 3.47847245290467345890884156009, 4.15640892835786435670425711882, 4.66384901152172158286527482846, 5.52646817500137101309425705982, 6.62024079209216770963103334855, 7.30388138786923804645060753758, 7.85139049954278322225278325179

Graph of the $Z$-function along the critical line