Properties

Label 2-9280-1.1-c1-0-1
Degree $2$
Conductor $9280$
Sign $1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.649·3-s − 5-s + 1.74·7-s − 2.57·9-s − 6.54·11-s − 6.26·13-s + 0.649·15-s + 2.27·17-s − 7.79·19-s − 1.13·21-s − 4.43·23-s + 25-s + 3.62·27-s − 29-s + 0.487·31-s + 4.25·33-s − 1.74·35-s − 4.85·37-s + 4.06·39-s − 10.7·41-s − 5.57·43-s + 2.57·45-s − 2.71·47-s − 3.96·49-s − 1.48·51-s + 7.64·53-s + 6.54·55-s + ⋯
L(s)  = 1  − 0.375·3-s − 0.447·5-s + 0.658·7-s − 0.859·9-s − 1.97·11-s − 1.73·13-s + 0.167·15-s + 0.552·17-s − 1.78·19-s − 0.247·21-s − 0.924·23-s + 0.200·25-s + 0.697·27-s − 0.185·29-s + 0.0876·31-s + 0.739·33-s − 0.294·35-s − 0.797·37-s + 0.651·39-s − 1.68·41-s − 0.849·43-s + 0.384·45-s − 0.395·47-s − 0.565·49-s − 0.207·51-s + 1.05·53-s + 0.882·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.02848703362\)
\(L(\frac12)\) \(\approx\) \(0.02848703362\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 + 0.649T + 3T^{2} \)
7 \( 1 - 1.74T + 7T^{2} \)
11 \( 1 + 6.54T + 11T^{2} \)
13 \( 1 + 6.26T + 13T^{2} \)
17 \( 1 - 2.27T + 17T^{2} \)
19 \( 1 + 7.79T + 19T^{2} \)
23 \( 1 + 4.43T + 23T^{2} \)
31 \( 1 - 0.487T + 31T^{2} \)
37 \( 1 + 4.85T + 37T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 + 5.57T + 43T^{2} \)
47 \( 1 + 2.71T + 47T^{2} \)
53 \( 1 - 7.64T + 53T^{2} \)
59 \( 1 - 2.10T + 59T^{2} \)
61 \( 1 + 4.89T + 61T^{2} \)
67 \( 1 - 6.49T + 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 + 3.34T + 73T^{2} \)
79 \( 1 + 3.17T + 79T^{2} \)
83 \( 1 - 8.73T + 83T^{2} \)
89 \( 1 + 6.52T + 89T^{2} \)
97 \( 1 - 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79063013420796151686565234403, −7.16380010600799707350732094488, −6.31268804875198334038866273145, −5.41240761134143320585999266784, −5.05592722025972861411360457570, −4.47901986350002166101190463927, −3.34176929046881741946233730129, −2.53003603690504068189591373477, −1.94675217427986356222371092557, −0.07549677052465045322288474123, 0.07549677052465045322288474123, 1.94675217427986356222371092557, 2.53003603690504068189591373477, 3.34176929046881741946233730129, 4.47901986350002166101190463927, 5.05592722025972861411360457570, 5.41240761134143320585999266784, 6.31268804875198334038866273145, 7.16380010600799707350732094488, 7.79063013420796151686565234403

Graph of the $Z$-function along the critical line