Properties

Label 2-9248-1.1-c1-0-110
Degree $2$
Conductor $9248$
Sign $1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.14·3-s + 1.71·5-s + 1.95·7-s − 1.69·9-s + 5.28·11-s + 4.62·13-s − 1.95·15-s − 1.34·19-s − 2.23·21-s − 6.44·23-s − 2.07·25-s + 5.36·27-s + 3.44·29-s + 2.64·31-s − 6.04·33-s + 3.34·35-s + 11.0·37-s − 5.28·39-s − 4.82·41-s + 5.75·43-s − 2.89·45-s + 6.84·47-s − 3.18·49-s − 8.09·53-s + 9.04·55-s + 1.54·57-s − 8.02·59-s + ⋯
L(s)  = 1  − 0.660·3-s + 0.765·5-s + 0.738·7-s − 0.563·9-s + 1.59·11-s + 1.28·13-s − 0.505·15-s − 0.309·19-s − 0.487·21-s − 1.34·23-s − 0.414·25-s + 1.03·27-s + 0.639·29-s + 0.474·31-s − 1.05·33-s + 0.565·35-s + 1.81·37-s − 0.846·39-s − 0.753·41-s + 0.878·43-s − 0.431·45-s + 0.997·47-s − 0.455·49-s − 1.11·53-s + 1.21·55-s + 0.204·57-s − 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.453927902\)
\(L(\frac12)\) \(\approx\) \(2.453927902\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 + 1.14T + 3T^{2} \)
5 \( 1 - 1.71T + 5T^{2} \)
7 \( 1 - 1.95T + 7T^{2} \)
11 \( 1 - 5.28T + 11T^{2} \)
13 \( 1 - 4.62T + 13T^{2} \)
19 \( 1 + 1.34T + 19T^{2} \)
23 \( 1 + 6.44T + 23T^{2} \)
29 \( 1 - 3.44T + 29T^{2} \)
31 \( 1 - 2.64T + 31T^{2} \)
37 \( 1 - 11.0T + 37T^{2} \)
41 \( 1 + 4.82T + 41T^{2} \)
43 \( 1 - 5.75T + 43T^{2} \)
47 \( 1 - 6.84T + 47T^{2} \)
53 \( 1 + 8.09T + 53T^{2} \)
59 \( 1 + 8.02T + 59T^{2} \)
61 \( 1 + 0.0929T + 61T^{2} \)
67 \( 1 - 10.7T + 67T^{2} \)
71 \( 1 - 10.5T + 71T^{2} \)
73 \( 1 - 0.564T + 73T^{2} \)
79 \( 1 - 6.26T + 79T^{2} \)
83 \( 1 - 9.12T + 83T^{2} \)
89 \( 1 - 12.7T + 89T^{2} \)
97 \( 1 - 1.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.958669692113030608265072224132, −6.63437883282712281690194716863, −6.22218770308307735948987533764, −5.93232198129889636914570655142, −5.02878519057161035155472705210, −4.24227268653903469341467463999, −3.62716963045857389191793441392, −2.44273571203242733444285970496, −1.59118515116492367622893337504, −0.843323705353058346644873634287, 0.843323705353058346644873634287, 1.59118515116492367622893337504, 2.44273571203242733444285970496, 3.62716963045857389191793441392, 4.24227268653903469341467463999, 5.02878519057161035155472705210, 5.93232198129889636914570655142, 6.22218770308307735948987533764, 6.63437883282712281690194716863, 7.958669692113030608265072224132

Graph of the $Z$-function along the critical line