L(s) = 1 | − 3·3-s − 2·7-s + 6·9-s − 13-s + 6·21-s + 23-s − 9·27-s − 3·29-s − 3·31-s + 8·37-s + 3·39-s + 3·41-s − 2·43-s − 11·47-s − 3·49-s + 14·53-s + 8·59-s − 4·61-s − 12·63-s − 4·67-s − 3·69-s − 7·71-s + 9·73-s + 9·81-s + 4·83-s + 9·87-s − 2·89-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.755·7-s + 2·9-s − 0.277·13-s + 1.30·21-s + 0.208·23-s − 1.73·27-s − 0.557·29-s − 0.538·31-s + 1.31·37-s + 0.480·39-s + 0.468·41-s − 0.304·43-s − 1.60·47-s − 3/7·49-s + 1.92·53-s + 1.04·59-s − 0.512·61-s − 1.51·63-s − 0.488·67-s − 0.361·69-s − 0.830·71-s + 1.05·73-s + 81-s + 0.439·83-s + 0.964·87-s − 0.211·89-s + ⋯ |
Λ(s)=(=(9200s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9200s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5770959180 |
L(21) |
≈ |
0.5770959180 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1−T |
good | 3 | 1+pT+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1+3T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1+11T+pT2 |
| 53 | 1−14T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+7T+pT2 |
| 73 | 1−9T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1+18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43375077985563887978169616802, −6.84375350435015559761943384325, −6.31797398354246854766794516230, −5.67904551637868855962856681300, −5.14555431991860518244362280094, −4.37586317640795451613096196834, −3.65179626455037376248954783203, −2.58623822926810723667775573674, −1.42273224465244581820044878115, −0.42234562898825569737865036719,
0.42234562898825569737865036719, 1.42273224465244581820044878115, 2.58623822926810723667775573674, 3.65179626455037376248954783203, 4.37586317640795451613096196834, 5.14555431991860518244362280094, 5.67904551637868855962856681300, 6.31797398354246854766794516230, 6.84375350435015559761943384325, 7.43375077985563887978169616802