Properties

Label 2-9200-1.1-c1-0-16
Degree $2$
Conductor $9200$
Sign $1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 2·7-s + 6·9-s − 13-s + 6·21-s + 23-s − 9·27-s − 3·29-s − 3·31-s + 8·37-s + 3·39-s + 3·41-s − 2·43-s − 11·47-s − 3·49-s + 14·53-s + 8·59-s − 4·61-s − 12·63-s − 4·67-s − 3·69-s − 7·71-s + 9·73-s + 9·81-s + 4·83-s + 9·87-s − 2·89-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.755·7-s + 2·9-s − 0.277·13-s + 1.30·21-s + 0.208·23-s − 1.73·27-s − 0.557·29-s − 0.538·31-s + 1.31·37-s + 0.480·39-s + 0.468·41-s − 0.304·43-s − 1.60·47-s − 3/7·49-s + 1.92·53-s + 1.04·59-s − 0.512·61-s − 1.51·63-s − 0.488·67-s − 0.361·69-s − 0.830·71-s + 1.05·73-s + 81-s + 0.439·83-s + 0.964·87-s − 0.211·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5770959180\)
\(L(\frac12)\) \(\approx\) \(0.5770959180\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 11 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43375077985563887978169616802, −6.84375350435015559761943384325, −6.31797398354246854766794516230, −5.67904551637868855962856681300, −5.14555431991860518244362280094, −4.37586317640795451613096196834, −3.65179626455037376248954783203, −2.58623822926810723667775573674, −1.42273224465244581820044878115, −0.42234562898825569737865036719, 0.42234562898825569737865036719, 1.42273224465244581820044878115, 2.58623822926810723667775573674, 3.65179626455037376248954783203, 4.37586317640795451613096196834, 5.14555431991860518244362280094, 5.67904551637868855962856681300, 6.31797398354246854766794516230, 6.84375350435015559761943384325, 7.43375077985563887978169616802

Graph of the $Z$-function along the critical line