Properties

Label 2-920-1.1-c1-0-21
Degree $2$
Conductor $920$
Sign $-1$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.56·3-s − 5-s − 2.56·7-s − 0.561·9-s − 2·11-s − 3.56·13-s − 1.56·15-s + 1.43·17-s − 2·19-s − 4·21-s − 23-s + 25-s − 5.56·27-s − 8.12·29-s + 0.123·31-s − 3.12·33-s + 2.56·35-s + 0.561·37-s − 5.56·39-s + 4.12·41-s + 6.24·43-s + 0.561·45-s − 8.68·47-s − 0.438·49-s + 2.24·51-s + 8.56·53-s + 2·55-s + ⋯
L(s)  = 1  + 0.901·3-s − 0.447·5-s − 0.968·7-s − 0.187·9-s − 0.603·11-s − 0.987·13-s − 0.403·15-s + 0.348·17-s − 0.458·19-s − 0.872·21-s − 0.208·23-s + 0.200·25-s − 1.07·27-s − 1.50·29-s + 0.0221·31-s − 0.543·33-s + 0.432·35-s + 0.0923·37-s − 0.890·39-s + 0.643·41-s + 0.952·43-s + 0.0837·45-s − 1.26·47-s − 0.0626·49-s + 0.314·51-s + 1.17·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
23 \( 1 + T \)
good3 \( 1 - 1.56T + 3T^{2} \)
7 \( 1 + 2.56T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 3.56T + 13T^{2} \)
17 \( 1 - 1.43T + 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
29 \( 1 + 8.12T + 29T^{2} \)
31 \( 1 - 0.123T + 31T^{2} \)
37 \( 1 - 0.561T + 37T^{2} \)
41 \( 1 - 4.12T + 41T^{2} \)
43 \( 1 - 6.24T + 43T^{2} \)
47 \( 1 + 8.68T + 47T^{2} \)
53 \( 1 - 8.56T + 53T^{2} \)
59 \( 1 + 1.43T + 59T^{2} \)
61 \( 1 + 0.876T + 61T^{2} \)
67 \( 1 + 7.43T + 67T^{2} \)
71 \( 1 + 5T + 71T^{2} \)
73 \( 1 - 7.56T + 73T^{2} \)
79 \( 1 + 0.876T + 79T^{2} \)
83 \( 1 - 7.68T + 83T^{2} \)
89 \( 1 - 8T + 89T^{2} \)
97 \( 1 - 5.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527700492840389776085760445404, −8.918055005191489921962297743259, −7.87787094055281652610846232806, −7.41800561273076131734096444241, −6.26167348608412767415468072335, −5.25635349558868339763553177976, −3.99454410774820647075962821105, −3.11920822435374775943149076422, −2.27445453388986391326208563508, 0, 2.27445453388986391326208563508, 3.11920822435374775943149076422, 3.99454410774820647075962821105, 5.25635349558868339763553177976, 6.26167348608412767415468072335, 7.41800561273076131734096444241, 7.87787094055281652610846232806, 8.918055005191489921962297743259, 9.527700492840389776085760445404

Graph of the $Z$-function along the critical line