L(s) = 1 | + 3-s − 5-s − 2·7-s − 2·9-s + 13-s − 15-s − 4·17-s − 4·19-s − 2·21-s + 23-s + 25-s − 5·27-s − 3·29-s − 31-s + 2·35-s − 8·37-s + 39-s − 5·41-s − 6·43-s + 2·45-s + 9·47-s − 3·49-s − 4·51-s + 2·53-s − 4·57-s + 4·63-s − 65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 0.755·7-s − 2/3·9-s + 0.277·13-s − 0.258·15-s − 0.970·17-s − 0.917·19-s − 0.436·21-s + 0.208·23-s + 1/5·25-s − 0.962·27-s − 0.557·29-s − 0.179·31-s + 0.338·35-s − 1.31·37-s + 0.160·39-s − 0.780·41-s − 0.914·43-s + 0.298·45-s + 1.31·47-s − 3/7·49-s − 0.560·51-s + 0.274·53-s − 0.529·57-s + 0.503·63-s − 0.124·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 - T + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 + T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 + 5 T + p T^{2} \) |
| 43 | \( 1 + 6 T + p T^{2} \) |
| 47 | \( 1 - 9 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 3 T + p T^{2} \) |
| 73 | \( 1 - 7 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 - 8 T + p T^{2} \) |
| 89 | \( 1 + 14 T + p T^{2} \) |
| 97 | \( 1 + 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.478758761073904215941317036848, −8.755728696260485632940986674078, −8.211346506282102834214316168774, −7.07026939594301482653796233966, −6.35976630621235922374887406783, −5.26343851670073918515221325937, −4.01358333286914915727130091103, −3.23338502943497628525350311323, −2.12946958546745955907702459510, 0,
2.12946958546745955907702459510, 3.23338502943497628525350311323, 4.01358333286914915727130091103, 5.26343851670073918515221325937, 6.35976630621235922374887406783, 7.07026939594301482653796233966, 8.211346506282102834214316168774, 8.755728696260485632940986674078, 9.478758761073904215941317036848