Properties

Label 2-920-1.1-c1-0-19
Degree $2$
Conductor $920$
Sign $-1$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s − 2·9-s + 13-s − 15-s − 4·17-s − 4·19-s − 2·21-s + 23-s + 25-s − 5·27-s − 3·29-s − 31-s + 2·35-s − 8·37-s + 39-s − 5·41-s − 6·43-s + 2·45-s + 9·47-s − 3·49-s − 4·51-s + 2·53-s − 4·57-s + 4·63-s − 65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s − 2/3·9-s + 0.277·13-s − 0.258·15-s − 0.970·17-s − 0.917·19-s − 0.436·21-s + 0.208·23-s + 1/5·25-s − 0.962·27-s − 0.557·29-s − 0.179·31-s + 0.338·35-s − 1.31·37-s + 0.160·39-s − 0.780·41-s − 0.914·43-s + 0.298·45-s + 1.31·47-s − 3/7·49-s − 0.560·51-s + 0.274·53-s − 0.529·57-s + 0.503·63-s − 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.478758761073904215941317036848, −8.755728696260485632940986674078, −8.211346506282102834214316168774, −7.07026939594301482653796233966, −6.35976630621235922374887406783, −5.26343851670073918515221325937, −4.01358333286914915727130091103, −3.23338502943497628525350311323, −2.12946958546745955907702459510, 0, 2.12946958546745955907702459510, 3.23338502943497628525350311323, 4.01358333286914915727130091103, 5.26343851670073918515221325937, 6.35976630621235922374887406783, 7.07026939594301482653796233966, 8.211346506282102834214316168774, 8.755728696260485632940986674078, 9.478758761073904215941317036848

Graph of the $Z$-function along the critical line