L(s) = 1 | + 3-s − 5-s − 2·7-s − 2·9-s + 13-s − 15-s − 4·17-s − 4·19-s − 2·21-s + 23-s + 25-s − 5·27-s − 3·29-s − 31-s + 2·35-s − 8·37-s + 39-s − 5·41-s − 6·43-s + 2·45-s + 9·47-s − 3·49-s − 4·51-s + 2·53-s − 4·57-s + 4·63-s − 65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 0.755·7-s − 2/3·9-s + 0.277·13-s − 0.258·15-s − 0.970·17-s − 0.917·19-s − 0.436·21-s + 0.208·23-s + 1/5·25-s − 0.962·27-s − 0.557·29-s − 0.179·31-s + 0.338·35-s − 1.31·37-s + 0.160·39-s − 0.780·41-s − 0.914·43-s + 0.298·45-s + 1.31·47-s − 3/7·49-s − 0.560·51-s + 0.274·53-s − 0.529·57-s + 0.503·63-s − 0.124·65-s + ⋯ |
Λ(s)=(=(920s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(920s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 3 | 1−T+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+4T+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1+T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1+5T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1−9T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1−7T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.478758761073904215941317036848, −8.755728696260485632940986674078, −8.211346506282102834214316168774, −7.07026939594301482653796233966, −6.35976630621235922374887406783, −5.26343851670073918515221325937, −4.01358333286914915727130091103, −3.23338502943497628525350311323, −2.12946958546745955907702459510, 0,
2.12946958546745955907702459510, 3.23338502943497628525350311323, 4.01358333286914915727130091103, 5.26343851670073918515221325937, 6.35976630621235922374887406783, 7.07026939594301482653796233966, 8.211346506282102834214316168774, 8.755728696260485632940986674078, 9.478758761073904215941317036848