L(s) = 1 | + 2.56·3-s + 5-s + 5.12·7-s + 3.56·9-s − 4·11-s − 0.561·13-s + 2.56·15-s − 3.12·17-s + 4·19-s + 13.1·21-s + 23-s + 25-s + 1.43·27-s − 8.56·29-s + 1.43·31-s − 10.2·33-s + 5.12·35-s − 7.12·37-s − 1.43·39-s + 0.561·41-s − 9.12·43-s + 3.56·45-s − 3.68·47-s + 19.2·49-s − 8·51-s − 4.24·53-s − 4·55-s + ⋯ |
L(s) = 1 | + 1.47·3-s + 0.447·5-s + 1.93·7-s + 1.18·9-s − 1.20·11-s − 0.155·13-s + 0.661·15-s − 0.757·17-s + 0.917·19-s + 2.86·21-s + 0.208·23-s + 0.200·25-s + 0.276·27-s − 1.58·29-s + 0.258·31-s − 1.78·33-s + 0.865·35-s − 1.17·37-s − 0.230·39-s + 0.0876·41-s − 1.39·43-s + 0.530·45-s − 0.537·47-s + 2.74·49-s − 1.12·51-s − 0.583·53-s − 0.539·55-s + ⋯ |
Λ(s)=(=(920s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(920s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.099131701 |
L(21) |
≈ |
3.099131701 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 23 | 1−T |
good | 3 | 1−2.56T+3T2 |
| 7 | 1−5.12T+7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1+0.561T+13T2 |
| 17 | 1+3.12T+17T2 |
| 19 | 1−4T+19T2 |
| 29 | 1+8.56T+29T2 |
| 31 | 1−1.43T+31T2 |
| 37 | 1+7.12T+37T2 |
| 41 | 1−0.561T+41T2 |
| 43 | 1+9.12T+43T2 |
| 47 | 1+3.68T+47T2 |
| 53 | 1+4.24T+53T2 |
| 59 | 1+6.24T+59T2 |
| 61 | 1−11.1T+61T2 |
| 67 | 1−6.24T+67T2 |
| 71 | 1−3.68T+71T2 |
| 73 | 1−16.5T+73T2 |
| 79 | 1+10.2T+79T2 |
| 83 | 1−12T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+16.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.920076549679180655210937480297, −9.084272153835367855041594782253, −8.282337019996346633165519184144, −7.86840105021195092401430643316, −7.06434875404388674376261168701, −5.38978448874195467279091161608, −4.84759225581334813187804428545, −3.57529344367571280010444902714, −2.38414527944407314457657815859, −1.71934152560981742499742110002,
1.71934152560981742499742110002, 2.38414527944407314457657815859, 3.57529344367571280010444902714, 4.84759225581334813187804428545, 5.38978448874195467279091161608, 7.06434875404388674376261168701, 7.86840105021195092401430643316, 8.282337019996346633165519184144, 9.084272153835367855041594782253, 9.920076549679180655210937480297