Properties

Label 2-920-1.1-c1-0-16
Degree $2$
Conductor $920$
Sign $1$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.07·3-s + 5-s − 2.07·7-s + 6.48·9-s + 5.07·11-s − 3.48·13-s + 3.07·15-s + 6.48·17-s − 7.48·19-s − 6.40·21-s + 23-s + 25-s + 10.7·27-s − 1.56·29-s + 0.0791·31-s + 15.6·33-s − 2.07·35-s − 9.71·37-s − 10.7·39-s − 0.480·41-s + 8·43-s + 6.48·45-s + 6.96·47-s − 2.67·49-s + 19.9·51-s + 11.7·53-s + 5.07·55-s + ⋯
L(s)  = 1  + 1.77·3-s + 0.447·5-s − 0.785·7-s + 2.16·9-s + 1.53·11-s − 0.965·13-s + 0.795·15-s + 1.57·17-s − 1.71·19-s − 1.39·21-s + 0.208·23-s + 0.200·25-s + 2.06·27-s − 0.289·29-s + 0.0142·31-s + 2.72·33-s − 0.351·35-s − 1.59·37-s − 1.71·39-s − 0.0751·41-s + 1.21·43-s + 0.966·45-s + 1.01·47-s − 0.382·49-s + 2.79·51-s + 1.60·53-s + 0.684·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.034834952\)
\(L(\frac12)\) \(\approx\) \(3.034834952\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good3 \( 1 - 3.07T + 3T^{2} \)
7 \( 1 + 2.07T + 7T^{2} \)
11 \( 1 - 5.07T + 11T^{2} \)
13 \( 1 + 3.48T + 13T^{2} \)
17 \( 1 - 6.48T + 17T^{2} \)
19 \( 1 + 7.48T + 19T^{2} \)
29 \( 1 + 1.56T + 29T^{2} \)
31 \( 1 - 0.0791T + 31T^{2} \)
37 \( 1 + 9.71T + 37T^{2} \)
41 \( 1 + 0.480T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 - 6.96T + 47T^{2} \)
53 \( 1 - 11.7T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 - 7.88T + 61T^{2} \)
67 \( 1 + 9.71T + 67T^{2} \)
71 \( 1 + 9.67T + 71T^{2} \)
73 \( 1 + 13.2T + 73T^{2} \)
79 \( 1 + 12.3T + 79T^{2} \)
83 \( 1 + 4.59T + 83T^{2} \)
89 \( 1 - 8.31T + 89T^{2} \)
97 \( 1 - 7.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.926146718215994961850415868461, −9.029566655532443377009804811765, −8.778106974065532144620875794308, −7.54378579353636160191221604105, −6.93154349237669741552996497672, −5.90556893088585129142762414397, −4.35912673720096826832977216483, −3.56742418908269208095011621392, −2.66584819461882898238006159893, −1.58709543811419562535628536652, 1.58709543811419562535628536652, 2.66584819461882898238006159893, 3.56742418908269208095011621392, 4.35912673720096826832977216483, 5.90556893088585129142762414397, 6.93154349237669741552996497672, 7.54378579353636160191221604105, 8.778106974065532144620875794308, 9.029566655532443377009804811765, 9.926146718215994961850415868461

Graph of the $Z$-function along the critical line