L(s) = 1 | − 3·3-s + 5-s − 2·7-s + 6·9-s + 13-s − 3·15-s + 6·21-s + 23-s + 25-s − 9·27-s − 3·29-s + 3·31-s − 2·35-s − 8·37-s − 3·39-s + 3·41-s − 2·43-s + 6·45-s − 11·47-s − 3·49-s − 14·53-s − 8·59-s − 4·61-s − 12·63-s + 65-s − 4·67-s − 3·69-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 0.447·5-s − 0.755·7-s + 2·9-s + 0.277·13-s − 0.774·15-s + 1.30·21-s + 0.208·23-s + 1/5·25-s − 1.73·27-s − 0.557·29-s + 0.538·31-s − 0.338·35-s − 1.31·37-s − 0.480·39-s + 0.468·41-s − 0.304·43-s + 0.894·45-s − 1.60·47-s − 3/7·49-s − 1.92·53-s − 1.04·59-s − 0.512·61-s − 1.51·63-s + 0.124·65-s − 0.488·67-s − 0.361·69-s + ⋯ |
Λ(s)=(=(920s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(920s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 23 | 1−T |
good | 3 | 1+pT+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1−3T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1+11T+pT2 |
| 53 | 1+14T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1−7T+pT2 |
| 73 | 1+9T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1−18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.890882640173503188502898887273, −9.111657690465418843613202394863, −7.76060357445880650356822288152, −6.63403416528712923600421000252, −6.29492395479034476582513996003, −5.37961484897365172295492227072, −4.60783226407171159669213174854, −3.29362648392513345292182959612, −1.52953635996900865734002074563, 0,
1.52953635996900865734002074563, 3.29362648392513345292182959612, 4.60783226407171159669213174854, 5.37961484897365172295492227072, 6.29492395479034476582513996003, 6.63403416528712923600421000252, 7.76060357445880650356822288152, 9.111657690465418843613202394863, 9.890882640173503188502898887273