Properties

Label 2-920-1.1-c1-0-13
Degree $2$
Conductor $920$
Sign $-1$
Analytic cond. $7.34623$
Root an. cond. $2.71039$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5-s − 2·7-s + 6·9-s + 13-s − 3·15-s + 6·21-s + 23-s + 25-s − 9·27-s − 3·29-s + 3·31-s − 2·35-s − 8·37-s − 3·39-s + 3·41-s − 2·43-s + 6·45-s − 11·47-s − 3·49-s − 14·53-s − 8·59-s − 4·61-s − 12·63-s + 65-s − 4·67-s − 3·69-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.447·5-s − 0.755·7-s + 2·9-s + 0.277·13-s − 0.774·15-s + 1.30·21-s + 0.208·23-s + 1/5·25-s − 1.73·27-s − 0.557·29-s + 0.538·31-s − 0.338·35-s − 1.31·37-s − 0.480·39-s + 0.468·41-s − 0.304·43-s + 0.894·45-s − 1.60·47-s − 3/7·49-s − 1.92·53-s − 1.04·59-s − 0.512·61-s − 1.51·63-s + 0.124·65-s − 0.488·67-s − 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(920\)    =    \(2^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(7.34623\)
Root analytic conductor: \(2.71039\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 11 T + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.890882640173503188502898887273, −9.111657690465418843613202394863, −7.76060357445880650356822288152, −6.63403416528712923600421000252, −6.29492395479034476582513996003, −5.37961484897365172295492227072, −4.60783226407171159669213174854, −3.29362648392513345292182959612, −1.52953635996900865734002074563, 0, 1.52953635996900865734002074563, 3.29362648392513345292182959612, 4.60783226407171159669213174854, 5.37961484897365172295492227072, 6.29492395479034476582513996003, 6.63403416528712923600421000252, 7.76060357445880650356822288152, 9.111657690465418843613202394863, 9.890882640173503188502898887273

Graph of the $Z$-function along the critical line