L(s) = 1 | − 3·3-s + 5-s − 2·7-s + 6·9-s + 13-s − 3·15-s + 6·21-s + 23-s + 25-s − 9·27-s − 3·29-s + 3·31-s − 2·35-s − 8·37-s − 3·39-s + 3·41-s − 2·43-s + 6·45-s − 11·47-s − 3·49-s − 14·53-s − 8·59-s − 4·61-s − 12·63-s + 65-s − 4·67-s − 3·69-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 0.447·5-s − 0.755·7-s + 2·9-s + 0.277·13-s − 0.774·15-s + 1.30·21-s + 0.208·23-s + 1/5·25-s − 1.73·27-s − 0.557·29-s + 0.538·31-s − 0.338·35-s − 1.31·37-s − 0.480·39-s + 0.468·41-s − 0.304·43-s + 0.894·45-s − 1.60·47-s − 3/7·49-s − 1.92·53-s − 1.04·59-s − 0.512·61-s − 1.51·63-s + 0.124·65-s − 0.488·67-s − 0.361·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 23 | \( 1 - T \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 - 3 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 - 3 T + p T^{2} \) |
| 43 | \( 1 + 2 T + p T^{2} \) |
| 47 | \( 1 + 11 T + p T^{2} \) |
| 53 | \( 1 + 14 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 + 4 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 7 T + p T^{2} \) |
| 73 | \( 1 + 9 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 2 T + p T^{2} \) |
| 97 | \( 1 - 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.890882640173503188502898887273, −9.111657690465418843613202394863, −7.76060357445880650356822288152, −6.63403416528712923600421000252, −6.29492395479034476582513996003, −5.37961484897365172295492227072, −4.60783226407171159669213174854, −3.29362648392513345292182959612, −1.52953635996900865734002074563, 0,
1.52953635996900865734002074563, 3.29362648392513345292182959612, 4.60783226407171159669213174854, 5.37961484897365172295492227072, 6.29492395479034476582513996003, 6.63403416528712923600421000252, 7.76060357445880650356822288152, 9.111657690465418843613202394863, 9.890882640173503188502898887273