L(s) = 1 | + 3.30·3-s − 5-s − 2.55·7-s + 7.93·9-s − 2.72·11-s + 7.12·13-s − 3.30·15-s + 0.924·17-s + 7.51·19-s − 8.43·21-s − 23-s + 25-s + 16.3·27-s − 2.38·29-s + 0.866·31-s − 9.00·33-s + 2.55·35-s + 0.352·37-s + 23.5·39-s + 4.34·41-s − 7.93·45-s − 13.3·47-s − 0.495·49-s + 3.05·51-s + 3.99·53-s + 2.72·55-s + 24.8·57-s + ⋯ |
L(s) = 1 | + 1.90·3-s − 0.447·5-s − 0.963·7-s + 2.64·9-s − 0.821·11-s + 1.97·13-s − 0.853·15-s + 0.224·17-s + 1.72·19-s − 1.84·21-s − 0.208·23-s + 0.200·25-s + 3.13·27-s − 0.442·29-s + 0.155·31-s − 1.56·33-s + 0.431·35-s + 0.0580·37-s + 3.77·39-s + 0.677·41-s − 1.18·45-s − 1.94·47-s − 0.0707·49-s + 0.427·51-s + 0.548·53-s + 0.367·55-s + 3.29·57-s + ⋯ |
Λ(s)=(=(920s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(920s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.786071565 |
L(21) |
≈ |
2.786071565 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 23 | 1+T |
good | 3 | 1−3.30T+3T2 |
| 7 | 1+2.55T+7T2 |
| 11 | 1+2.72T+11T2 |
| 13 | 1−7.12T+13T2 |
| 17 | 1−0.924T+17T2 |
| 19 | 1−7.51T+19T2 |
| 29 | 1+2.38T+29T2 |
| 31 | 1−0.866T+31T2 |
| 37 | 1−0.352T+37T2 |
| 41 | 1−4.34T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+13.3T+47T2 |
| 53 | 1−3.99T+53T2 |
| 59 | 1+3.84T+59T2 |
| 61 | 1+9.14T+61T2 |
| 67 | 1+3.15T+67T2 |
| 71 | 1+6.07T+71T2 |
| 73 | 1+11.3T+73T2 |
| 79 | 1+12.0T+79T2 |
| 83 | 1+6.35T+83T2 |
| 89 | 1+9.71T+89T2 |
| 97 | 1−8.76T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.807896551322860008838534651220, −9.181268409898647740169010277397, −8.381310241584692499435959626850, −7.78039899087033012236440891210, −7.00007863474549330956034237589, −5.84438893151810673248538426668, −4.32983811528020909020172018173, −3.29091365915199499416758983718, −3.07269763056208165100716382094, −1.43596666248003605840752136528,
1.43596666248003605840752136528, 3.07269763056208165100716382094, 3.29091365915199499416758983718, 4.32983811528020909020172018173, 5.84438893151810673248538426668, 7.00007863474549330956034237589, 7.78039899087033012236440891210, 8.381310241584692499435959626850, 9.181268409898647740169010277397, 9.807896551322860008838534651220