L(s) = 1 | − 1.31·3-s − 5-s − 4.66·7-s − 1.28·9-s + 2.23·11-s − 2.80·13-s + 1.31·15-s + 7.63·17-s − 1.36·19-s + 6.11·21-s − 23-s + 25-s + 5.61·27-s + 8.94·29-s − 1.58·31-s − 2.92·33-s + 4.66·35-s − 1.40·37-s + 3.67·39-s + 10.7·41-s + 1.28·45-s − 7.26·47-s + 14.7·49-s − 10.0·51-s − 8.38·53-s − 2.23·55-s + 1.78·57-s + ⋯ |
L(s) = 1 | − 0.756·3-s − 0.447·5-s − 1.76·7-s − 0.427·9-s + 0.672·11-s − 0.776·13-s + 0.338·15-s + 1.85·17-s − 0.312·19-s + 1.33·21-s − 0.208·23-s + 0.200·25-s + 1.08·27-s + 1.66·29-s − 0.284·31-s − 0.508·33-s + 0.788·35-s − 0.230·37-s + 0.587·39-s + 1.67·41-s + 0.191·45-s − 1.05·47-s + 2.10·49-s − 1.40·51-s − 1.15·53-s − 0.300·55-s + 0.236·57-s + ⋯ |
Λ(s)=(=(920s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(920s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7119498309 |
L(21) |
≈ |
0.7119498309 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 23 | 1+T |
good | 3 | 1+1.31T+3T2 |
| 7 | 1+4.66T+7T2 |
| 11 | 1−2.23T+11T2 |
| 13 | 1+2.80T+13T2 |
| 17 | 1−7.63T+17T2 |
| 19 | 1+1.36T+19T2 |
| 29 | 1−8.94T+29T2 |
| 31 | 1+1.58T+31T2 |
| 37 | 1+1.40T+37T2 |
| 41 | 1−10.7T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+7.26T+47T2 |
| 53 | 1+8.38T+53T2 |
| 59 | 1+4.88T+59T2 |
| 61 | 1−4.33T+61T2 |
| 67 | 1−8.54T+67T2 |
| 71 | 1−8.81T+71T2 |
| 73 | 1+5.26T+73T2 |
| 79 | 1−7.08T+79T2 |
| 83 | 1+4.59T+83T2 |
| 89 | 1+4.70T+89T2 |
| 97 | 1−16.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.981241531834909262063454138761, −9.519251041317907398170818991044, −8.416762214690052323266687001298, −7.38411124307599858031450644681, −6.47179509615879399356381659089, −5.95322277109494328558338176585, −4.87667813490802120246453902636, −3.61468483386655638528982792785, −2.85040023823048831759740890976, −0.67265184045756509530387203496,
0.67265184045756509530387203496, 2.85040023823048831759740890976, 3.61468483386655638528982792785, 4.87667813490802120246453902636, 5.95322277109494328558338176585, 6.47179509615879399356381659089, 7.38411124307599858031450644681, 8.416762214690052323266687001298, 9.519251041317907398170818991044, 9.981241531834909262063454138761