Properties

Label 2-92-92.11-c1-0-3
Degree $2$
Conductor $92$
Sign $0.999 + 0.0280i$
Analytic cond. $0.734623$
Root an. cond. $0.857101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.39 + 0.241i)2-s + (2.01 + 0.289i)3-s + (1.88 − 0.672i)4-s + (−0.680 − 2.31i)5-s + (−2.88 + 0.0825i)6-s + (0.800 + 0.923i)7-s + (−2.46 + 1.39i)8-s + (1.10 + 0.324i)9-s + (1.50 + 3.06i)10-s + (2.66 + 1.71i)11-s + (3.99 − 0.810i)12-s + (1.15 − 1.33i)13-s + (−1.33 − 1.09i)14-s + (−0.700 − 4.86i)15-s + (3.09 − 2.53i)16-s + (−6.70 + 3.06i)17-s + ⋯
L(s)  = 1  + (−0.985 + 0.170i)2-s + (1.16 + 0.167i)3-s + (0.941 − 0.336i)4-s + (−0.304 − 1.03i)5-s + (−1.17 + 0.0337i)6-s + (0.302 + 0.349i)7-s + (−0.870 + 0.491i)8-s + (0.368 + 0.108i)9-s + (0.476 + 0.969i)10-s + (0.804 + 0.517i)11-s + (1.15 − 0.233i)12-s + (0.321 − 0.370i)13-s + (−0.357 − 0.292i)14-s + (−0.180 − 1.25i)15-s + (0.773 − 0.633i)16-s + (−1.62 + 0.742i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0280i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0280i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(92\)    =    \(2^{2} \cdot 23\)
Sign: $0.999 + 0.0280i$
Analytic conductor: \(0.734623\)
Root analytic conductor: \(0.857101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{92} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 92,\ (\ :1/2),\ 0.999 + 0.0280i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.890773 - 0.0125106i\)
\(L(\frac12)\) \(\approx\) \(0.890773 - 0.0125106i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.39 - 0.241i)T \)
23 \( 1 + (1.31 + 4.61i)T \)
good3 \( 1 + (-2.01 - 0.289i)T + (2.87 + 0.845i)T^{2} \)
5 \( 1 + (0.680 + 2.31i)T + (-4.20 + 2.70i)T^{2} \)
7 \( 1 + (-0.800 - 0.923i)T + (-0.996 + 6.92i)T^{2} \)
11 \( 1 + (-2.66 - 1.71i)T + (4.56 + 10.0i)T^{2} \)
13 \( 1 + (-1.15 + 1.33i)T + (-1.85 - 12.8i)T^{2} \)
17 \( 1 + (6.70 - 3.06i)T + (11.1 - 12.8i)T^{2} \)
19 \( 1 + (2.65 - 5.81i)T + (-12.4 - 14.3i)T^{2} \)
29 \( 1 + (1.47 + 3.23i)T + (-18.9 + 21.9i)T^{2} \)
31 \( 1 + (3.77 - 0.543i)T + (29.7 - 8.73i)T^{2} \)
37 \( 1 + (0.727 - 2.47i)T + (-31.1 - 20.0i)T^{2} \)
41 \( 1 + (-8.68 + 2.55i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (-0.0321 + 0.223i)T + (-41.2 - 12.1i)T^{2} \)
47 \( 1 - 7.98iT - 47T^{2} \)
53 \( 1 + (2.04 - 1.77i)T + (7.54 - 52.4i)T^{2} \)
59 \( 1 + (-10.9 - 9.49i)T + (8.39 + 58.3i)T^{2} \)
61 \( 1 + (2.87 - 0.414i)T + (58.5 - 17.1i)T^{2} \)
67 \( 1 + (1.08 - 0.697i)T + (27.8 - 60.9i)T^{2} \)
71 \( 1 + (3.55 + 5.53i)T + (-29.4 + 64.5i)T^{2} \)
73 \( 1 + (-1.05 + 2.30i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (-9.02 + 10.4i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (1.24 + 0.366i)T + (69.8 + 44.8i)T^{2} \)
89 \( 1 + (-12.2 - 1.76i)T + (85.3 + 25.0i)T^{2} \)
97 \( 1 + (3.02 + 10.2i)T + (-81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.49729180958536418102575646777, −12.92437928695131807319304623892, −11.91052725937605609058909964458, −10.54211709448443413200611643972, −9.153583512768861933902882090930, −8.670607093931795776096905212190, −7.87940314312134776951237228226, −6.17512207426576758850663441344, −4.14890474378642539887199520710, −2.03460185771082469845000676412, 2.34978872640513454812384083733, 3.66368933879426304439164816338, 6.66565555257721418556578399061, 7.41794780500982300393873393228, 8.713975248620342972059080076129, 9.329559463214510093903852161046, 11.10268192437055297660899996880, 11.26401549988804168481554062019, 13.21524260494755438515664211891, 14.22848317634812002978946237045

Graph of the $Z$-function along the critical line