Properties

Label 2-92-92.11-c1-0-1
Degree $2$
Conductor $92$
Sign $-0.445 - 0.895i$
Analytic cond. $0.734623$
Root an. cond. $0.857101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.429 + 1.34i)2-s + (−1.65 − 0.237i)3-s + (−1.63 + 1.15i)4-s + (0.934 + 3.18i)5-s + (−0.388 − 2.32i)6-s + (0.148 + 0.171i)7-s + (−2.25 − 1.70i)8-s + (−0.208 − 0.0611i)9-s + (−3.88 + 2.62i)10-s + (3.48 + 2.24i)11-s + (2.96 − 1.52i)12-s + (3.81 − 4.40i)13-s + (−0.166 + 0.273i)14-s + (−0.787 − 5.47i)15-s + (1.32 − 3.77i)16-s + (−0.449 + 0.205i)17-s + ⋯
L(s)  = 1  + (0.303 + 0.952i)2-s + (−0.953 − 0.137i)3-s + (−0.815 + 0.578i)4-s + (0.417 + 1.42i)5-s + (−0.158 − 0.949i)6-s + (0.0560 + 0.0646i)7-s + (−0.798 − 0.601i)8-s + (−0.0694 − 0.0203i)9-s + (−1.22 + 0.830i)10-s + (1.05 + 0.675i)11-s + (0.856 − 0.439i)12-s + (1.05 − 1.22i)13-s + (−0.0446 + 0.0730i)14-s + (−0.203 − 1.41i)15-s + (0.330 − 0.943i)16-s + (−0.109 + 0.0497i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.445 - 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.445 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(92\)    =    \(2^{2} \cdot 23\)
Sign: $-0.445 - 0.895i$
Analytic conductor: \(0.734623\)
Root analytic conductor: \(0.857101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{92} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 92,\ (\ :1/2),\ -0.445 - 0.895i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.449395 + 0.725247i\)
\(L(\frac12)\) \(\approx\) \(0.449395 + 0.725247i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.429 - 1.34i)T \)
23 \( 1 + (-4.22 + 2.26i)T \)
good3 \( 1 + (1.65 + 0.237i)T + (2.87 + 0.845i)T^{2} \)
5 \( 1 + (-0.934 - 3.18i)T + (-4.20 + 2.70i)T^{2} \)
7 \( 1 + (-0.148 - 0.171i)T + (-0.996 + 6.92i)T^{2} \)
11 \( 1 + (-3.48 - 2.24i)T + (4.56 + 10.0i)T^{2} \)
13 \( 1 + (-3.81 + 4.40i)T + (-1.85 - 12.8i)T^{2} \)
17 \( 1 + (0.449 - 0.205i)T + (11.1 - 12.8i)T^{2} \)
19 \( 1 + (0.608 - 1.33i)T + (-12.4 - 14.3i)T^{2} \)
29 \( 1 + (0.299 + 0.654i)T + (-18.9 + 21.9i)T^{2} \)
31 \( 1 + (9.23 - 1.32i)T + (29.7 - 8.73i)T^{2} \)
37 \( 1 + (1.33 - 4.54i)T + (-31.1 - 20.0i)T^{2} \)
41 \( 1 + (2.79 - 0.819i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (-0.508 + 3.53i)T + (-41.2 - 12.1i)T^{2} \)
47 \( 1 + 6.02iT - 47T^{2} \)
53 \( 1 + (-4.56 + 3.95i)T + (7.54 - 52.4i)T^{2} \)
59 \( 1 + (-4.34 - 3.76i)T + (8.39 + 58.3i)T^{2} \)
61 \( 1 + (9.72 - 1.39i)T + (58.5 - 17.1i)T^{2} \)
67 \( 1 + (-10.2 + 6.57i)T + (27.8 - 60.9i)T^{2} \)
71 \( 1 + (2.54 + 3.96i)T + (-29.4 + 64.5i)T^{2} \)
73 \( 1 + (2.85 - 6.24i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (-1.34 + 1.55i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (6.97 + 2.04i)T + (69.8 + 44.8i)T^{2} \)
89 \( 1 + (-14.1 - 2.04i)T + (85.3 + 25.0i)T^{2} \)
97 \( 1 + (0.265 + 0.903i)T + (-81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69810293160715286639470130198, −13.53671118855490798109044251362, −12.39292460356516442225632960705, −11.21984668486212475075050706765, −10.22784321145415876708453635739, −8.708352811159993786213881231719, −7.08818246911051218444100628981, −6.38536363769099656017042662978, −5.42616095019439225766954886458, −3.47560420964613575475439380992, 1.28684954387240792460417384019, 4.04876483055653145324142287308, 5.22985643090105605183316829590, 6.20128466316384754853019725181, 8.856064713518060557571846446522, 9.208947896974478949524522697385, 10.97042545873490686150753235149, 11.50014100105130410392549961564, 12.51747905137868452378272505797, 13.46837085245314303597248977229

Graph of the $Z$-function along the critical line