L(s) = 1 | + 3.70·3-s − 7.32i·5-s − 2.18i·7-s + 4.70·9-s + 17.5i·11-s + 3.70·13-s − 27.1i·15-s + 16.8i·17-s − 9.50i·19-s − 8.08i·21-s + (19.8 + 11.6i)23-s − 28.6·25-s − 15.9·27-s − 41.9·29-s + 17.3·31-s + ⋯ |
L(s) = 1 | + 1.23·3-s − 1.46i·5-s − 0.312i·7-s + 0.522·9-s + 1.59i·11-s + 0.284·13-s − 1.80i·15-s + 0.989i·17-s − 0.500i·19-s − 0.385i·21-s + (0.861 + 0.508i)23-s − 1.14·25-s − 0.589·27-s − 1.44·29-s + 0.558·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.861 + 0.508i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.861 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.74230 - 0.475905i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.74230 - 0.475905i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + (-19.8 - 11.6i)T \) |
good | 3 | \( 1 - 3.70T + 9T^{2} \) |
| 5 | \( 1 + 7.32iT - 25T^{2} \) |
| 7 | \( 1 + 2.18iT - 49T^{2} \) |
| 11 | \( 1 - 17.5iT - 121T^{2} \) |
| 13 | \( 1 - 3.70T + 169T^{2} \) |
| 17 | \( 1 - 16.8iT - 289T^{2} \) |
| 19 | \( 1 + 9.50iT - 361T^{2} \) |
| 29 | \( 1 + 41.9T + 841T^{2} \) |
| 31 | \( 1 - 17.3T + 961T^{2} \) |
| 37 | \( 1 - 42.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 71.5T + 1.68e3T^{2} \) |
| 43 | \( 1 + 78.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 14.0T + 2.20e3T^{2} \) |
| 53 | \( 1 + 73.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 53.2T + 3.48e3T^{2} \) |
| 61 | \( 1 - 6.66iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 39.6iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 61.1T + 5.04e3T^{2} \) |
| 73 | \( 1 - 24.4T + 5.32e3T^{2} \) |
| 79 | \( 1 + 130. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 29.1iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 127. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 128. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.46784225942597093821101352740, −13.01062000932650139699077896764, −11.87783122262707137402149338725, −10.10133430889613242219085500854, −9.096472166990308192024914777641, −8.375884781851853625127972145274, −7.19829347370968169542722797566, −5.11723202207384691033456677587, −3.86392274702957005671351318979, −1.80265097587576663232961815849,
2.68817782145722512915924981544, 3.48007113302029812312150878153, 5.90187642470803943119405889932, 7.23028370215493107420326633587, 8.370222474401046197989788501290, 9.356560117379087953822222675722, 10.72845471440498464113368786581, 11.52963675376736026750031251813, 13.30463406033349681698727562506, 14.08280797924191046857877418985