L(s) = 1 | + 2.44·2-s + 0.667·3-s + 3.99·4-s + 0.910·5-s + 1.63·6-s + 4.87·8-s − 2.55·9-s + 2.22·10-s − 3.67·11-s + 2.66·12-s + 0.607·15-s + 3.95·16-s − 7.18·17-s − 6.25·18-s − 1.97·19-s + 3.63·20-s − 9.00·22-s − 0.596·23-s + 3.25·24-s − 4.17·25-s − 3.70·27-s − 3.64·29-s + 1.48·30-s − 7.08·31-s − 0.0786·32-s − 2.45·33-s − 17.5·34-s + ⋯ |
L(s) = 1 | + 1.73·2-s + 0.385·3-s + 1.99·4-s + 0.407·5-s + 0.667·6-s + 1.72·8-s − 0.851·9-s + 0.704·10-s − 1.10·11-s + 0.769·12-s + 0.156·15-s + 0.987·16-s − 1.74·17-s − 1.47·18-s − 0.453·19-s + 0.812·20-s − 1.91·22-s − 0.124·23-s + 0.664·24-s − 0.834·25-s − 0.713·27-s − 0.677·29-s + 0.271·30-s − 1.27·31-s − 0.0139·32-s − 0.427·33-s − 3.01·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 - 2.44T + 2T^{2} \) |
| 3 | \( 1 - 0.667T + 3T^{2} \) |
| 5 | \( 1 - 0.910T + 5T^{2} \) |
| 11 | \( 1 + 3.67T + 11T^{2} \) |
| 17 | \( 1 + 7.18T + 17T^{2} \) |
| 19 | \( 1 + 1.97T + 19T^{2} \) |
| 23 | \( 1 + 0.596T + 23T^{2} \) |
| 29 | \( 1 + 3.64T + 29T^{2} \) |
| 31 | \( 1 + 7.08T + 31T^{2} \) |
| 37 | \( 1 + 0.710T + 37T^{2} \) |
| 41 | \( 1 - 5.27T + 41T^{2} \) |
| 43 | \( 1 - 11.0T + 43T^{2} \) |
| 47 | \( 1 - 12.1T + 47T^{2} \) |
| 53 | \( 1 + 11.4T + 53T^{2} \) |
| 59 | \( 1 - 9.58T + 59T^{2} \) |
| 61 | \( 1 + 6.98T + 61T^{2} \) |
| 67 | \( 1 + 1.22T + 67T^{2} \) |
| 71 | \( 1 + 11.3T + 71T^{2} \) |
| 73 | \( 1 - 6.53T + 73T^{2} \) |
| 79 | \( 1 + 11.5T + 79T^{2} \) |
| 83 | \( 1 - 7.16T + 83T^{2} \) |
| 89 | \( 1 - 12.8T + 89T^{2} \) |
| 97 | \( 1 - 9.09T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.36691554493877507484533598355, −6.45072011253946785417754646972, −5.79454652656272370495236158901, −5.49409588041271793853473524632, −4.55187966396588725671304236234, −4.01068794699950245182026093500, −3.15037684518967692120358543407, −2.30281677656626698325721391048, −2.11983104676254876333033922911, 0,
2.11983104676254876333033922911, 2.30281677656626698325721391048, 3.15037684518967692120358543407, 4.01068794699950245182026093500, 4.55187966396588725671304236234, 5.49409588041271793853473524632, 5.79454652656272370495236158901, 6.45072011253946785417754646972, 7.36691554493877507484533598355