L(s) = 1 | + 2.44·2-s + 0.667·3-s + 3.99·4-s + 0.910·5-s + 1.63·6-s + 4.87·8-s − 2.55·9-s + 2.22·10-s − 3.67·11-s + 2.66·12-s + 0.607·15-s + 3.95·16-s − 7.18·17-s − 6.25·18-s − 1.97·19-s + 3.63·20-s − 9.00·22-s − 0.596·23-s + 3.25·24-s − 4.17·25-s − 3.70·27-s − 3.64·29-s + 1.48·30-s − 7.08·31-s − 0.0786·32-s − 2.45·33-s − 17.5·34-s + ⋯ |
L(s) = 1 | + 1.73·2-s + 0.385·3-s + 1.99·4-s + 0.407·5-s + 0.667·6-s + 1.72·8-s − 0.851·9-s + 0.704·10-s − 1.10·11-s + 0.769·12-s + 0.156·15-s + 0.987·16-s − 1.74·17-s − 1.47·18-s − 0.453·19-s + 0.812·20-s − 1.91·22-s − 0.124·23-s + 0.664·24-s − 0.834·25-s − 0.713·27-s − 0.677·29-s + 0.271·30-s − 1.27·31-s − 0.0139·32-s − 0.427·33-s − 3.01·34-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1−2.44T+2T2 |
| 3 | 1−0.667T+3T2 |
| 5 | 1−0.910T+5T2 |
| 11 | 1+3.67T+11T2 |
| 17 | 1+7.18T+17T2 |
| 19 | 1+1.97T+19T2 |
| 23 | 1+0.596T+23T2 |
| 29 | 1+3.64T+29T2 |
| 31 | 1+7.08T+31T2 |
| 37 | 1+0.710T+37T2 |
| 41 | 1−5.27T+41T2 |
| 43 | 1−11.0T+43T2 |
| 47 | 1−12.1T+47T2 |
| 53 | 1+11.4T+53T2 |
| 59 | 1−9.58T+59T2 |
| 61 | 1+6.98T+61T2 |
| 67 | 1+1.22T+67T2 |
| 71 | 1+11.3T+71T2 |
| 73 | 1−6.53T+73T2 |
| 79 | 1+11.5T+79T2 |
| 83 | 1−7.16T+83T2 |
| 89 | 1−12.8T+89T2 |
| 97 | 1−9.09T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.36691554493877507484533598355, −6.45072011253946785417754646972, −5.79454652656272370495236158901, −5.49409588041271793853473524632, −4.55187966396588725671304236234, −4.01068794699950245182026093500, −3.15037684518967692120358543407, −2.30281677656626698325721391048, −2.11983104676254876333033922911, 0,
2.11983104676254876333033922911, 2.30281677656626698325721391048, 3.15037684518967692120358543407, 4.01068794699950245182026093500, 4.55187966396588725671304236234, 5.49409588041271793853473524632, 5.79454652656272370495236158901, 6.45072011253946785417754646972, 7.36691554493877507484533598355