L(s) = 1 | + 2.18·2-s + 1.79·3-s + 2.79·4-s − 2.18·5-s + 3.92·6-s + 1.73·8-s + 0.208·9-s − 4.79·10-s + 1.27·11-s + 4.99·12-s − 3.92·15-s − 1.79·16-s + 3·17-s + 0.456·18-s − 6.56·19-s − 6.10·20-s + 2.79·22-s − 7.58·23-s + 3.10·24-s − 0.208·25-s − 5.00·27-s − 2.20·29-s − 8.58·30-s + 8.66·31-s − 7.38·32-s + 2.28·33-s + 6.56·34-s + ⋯ |
L(s) = 1 | + 1.54·2-s + 1.03·3-s + 1.39·4-s − 0.978·5-s + 1.60·6-s + 0.612·8-s + 0.0695·9-s − 1.51·10-s + 0.384·11-s + 1.44·12-s − 1.01·15-s − 0.447·16-s + 0.727·17-s + 0.107·18-s − 1.50·19-s − 1.36·20-s + 0.595·22-s − 1.58·23-s + 0.633·24-s − 0.0417·25-s − 0.962·27-s − 0.410·29-s − 1.56·30-s + 1.55·31-s − 1.30·32-s + 0.397·33-s + 1.12·34-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1−2.18T+2T2 |
| 3 | 1−1.79T+3T2 |
| 5 | 1+2.18T+5T2 |
| 11 | 1−1.27T+11T2 |
| 17 | 1−3T+17T2 |
| 19 | 1+6.56T+19T2 |
| 23 | 1+7.58T+23T2 |
| 29 | 1+2.20T+29T2 |
| 31 | 1−8.66T+31T2 |
| 37 | 1+6.92T+37T2 |
| 41 | 1+2.55T+41T2 |
| 43 | 1−4.37T+43T2 |
| 47 | 1−4.28T+47T2 |
| 53 | 1+12.1T+53T2 |
| 59 | 1−8.85T+59T2 |
| 61 | 1+12.7T+61T2 |
| 67 | 1−11.4T+67T2 |
| 71 | 1−0.913T+71T2 |
| 73 | 1−3.46T+73T2 |
| 79 | 1+6T+79T2 |
| 83 | 1−3.55T+83T2 |
| 89 | 1+2.91T+89T2 |
| 97 | 1+15.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.47634591908627826580838616126, −6.57233324901919558392604121138, −6.05311358179915019128681018624, −5.22648955931779422700274267481, −4.23852992229881899054544169637, −3.98795208474836277896977023973, −3.33579453188552984446874310907, −2.58871452474296397847341028630, −1.81787943167758195094476632093, 0,
1.81787943167758195094476632093, 2.58871452474296397847341028630, 3.33579453188552984446874310907, 3.98795208474836277896977023973, 4.23852992229881899054544169637, 5.22648955931779422700274267481, 6.05311358179915019128681018624, 6.57233324901919558392604121138, 7.47634591908627826580838616126