Properties

Label 2-91e2-1.1-c1-0-486
Degree $2$
Conductor $8281$
Sign $-1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.18·2-s + 1.79·3-s + 2.79·4-s − 2.18·5-s + 3.92·6-s + 1.73·8-s + 0.208·9-s − 4.79·10-s + 1.27·11-s + 4.99·12-s − 3.92·15-s − 1.79·16-s + 3·17-s + 0.456·18-s − 6.56·19-s − 6.10·20-s + 2.79·22-s − 7.58·23-s + 3.10·24-s − 0.208·25-s − 5.00·27-s − 2.20·29-s − 8.58·30-s + 8.66·31-s − 7.38·32-s + 2.28·33-s + 6.56·34-s + ⋯
L(s)  = 1  + 1.54·2-s + 1.03·3-s + 1.39·4-s − 0.978·5-s + 1.60·6-s + 0.612·8-s + 0.0695·9-s − 1.51·10-s + 0.384·11-s + 1.44·12-s − 1.01·15-s − 0.447·16-s + 0.727·17-s + 0.107·18-s − 1.50·19-s − 1.36·20-s + 0.595·22-s − 1.58·23-s + 0.633·24-s − 0.0417·25-s − 0.962·27-s − 0.410·29-s − 1.56·30-s + 1.55·31-s − 1.30·32-s + 0.397·33-s + 1.12·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 - 2.18T + 2T^{2} \)
3 \( 1 - 1.79T + 3T^{2} \)
5 \( 1 + 2.18T + 5T^{2} \)
11 \( 1 - 1.27T + 11T^{2} \)
17 \( 1 - 3T + 17T^{2} \)
19 \( 1 + 6.56T + 19T^{2} \)
23 \( 1 + 7.58T + 23T^{2} \)
29 \( 1 + 2.20T + 29T^{2} \)
31 \( 1 - 8.66T + 31T^{2} \)
37 \( 1 + 6.92T + 37T^{2} \)
41 \( 1 + 2.55T + 41T^{2} \)
43 \( 1 - 4.37T + 43T^{2} \)
47 \( 1 - 4.28T + 47T^{2} \)
53 \( 1 + 12.1T + 53T^{2} \)
59 \( 1 - 8.85T + 59T^{2} \)
61 \( 1 + 12.7T + 61T^{2} \)
67 \( 1 - 11.4T + 67T^{2} \)
71 \( 1 - 0.913T + 71T^{2} \)
73 \( 1 - 3.46T + 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 - 3.55T + 83T^{2} \)
89 \( 1 + 2.91T + 89T^{2} \)
97 \( 1 + 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47634591908627826580838616126, −6.57233324901919558392604121138, −6.05311358179915019128681018624, −5.22648955931779422700274267481, −4.23852992229881899054544169637, −3.98795208474836277896977023973, −3.33579453188552984446874310907, −2.58871452474296397847341028630, −1.81787943167758195094476632093, 0, 1.81787943167758195094476632093, 2.58871452474296397847341028630, 3.33579453188552984446874310907, 3.98795208474836277896977023973, 4.23852992229881899054544169637, 5.22648955931779422700274267481, 6.05311358179915019128681018624, 6.57233324901919558392604121138, 7.47634591908627826580838616126

Graph of the $Z$-function along the critical line