Properties

Label 2-91e2-1.1-c1-0-137
Degree $2$
Conductor $8281$
Sign $-1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.264·2-s − 2.90·3-s − 1.92·4-s − 1.43·5-s + 0.769·6-s + 1.03·8-s + 5.46·9-s + 0.379·10-s − 5.50·11-s + 5.61·12-s + 4.17·15-s + 3.58·16-s − 4.83·17-s − 1.44·18-s + 2.82·19-s + 2.76·20-s + 1.45·22-s − 5.99·23-s − 3.02·24-s − 2.94·25-s − 7.16·27-s + 1.04·29-s − 1.10·30-s + 9.20·31-s − 3.02·32-s + 16.0·33-s + 1.27·34-s + ⋯
L(s)  = 1  − 0.187·2-s − 1.67·3-s − 0.964·4-s − 0.641·5-s + 0.314·6-s + 0.367·8-s + 1.82·9-s + 0.120·10-s − 1.65·11-s + 1.62·12-s + 1.07·15-s + 0.896·16-s − 1.17·17-s − 0.340·18-s + 0.647·19-s + 0.619·20-s + 0.310·22-s − 1.25·23-s − 0.617·24-s − 0.588·25-s − 1.37·27-s + 0.193·29-s − 0.201·30-s + 1.65·31-s − 0.535·32-s + 2.78·33-s + 0.219·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 + 0.264T + 2T^{2} \)
3 \( 1 + 2.90T + 3T^{2} \)
5 \( 1 + 1.43T + 5T^{2} \)
11 \( 1 + 5.50T + 11T^{2} \)
17 \( 1 + 4.83T + 17T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 + 5.99T + 23T^{2} \)
29 \( 1 - 1.04T + 29T^{2} \)
31 \( 1 - 9.20T + 31T^{2} \)
37 \( 1 + 0.612T + 37T^{2} \)
41 \( 1 + 10.6T + 41T^{2} \)
43 \( 1 + 8.43T + 43T^{2} \)
47 \( 1 - 2.40T + 47T^{2} \)
53 \( 1 + 1.82T + 53T^{2} \)
59 \( 1 + 0.870T + 59T^{2} \)
61 \( 1 - 3.33T + 61T^{2} \)
67 \( 1 - 6.62T + 67T^{2} \)
71 \( 1 - 6.85T + 71T^{2} \)
73 \( 1 - 3.14T + 73T^{2} \)
79 \( 1 + 17.5T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 + 0.995T + 89T^{2} \)
97 \( 1 - 13.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.50397012893604926961555121993, −6.67782096623672558544557225427, −5.97168839791640756789387605397, −5.23226637914084523451683993701, −4.81472412016792942942719278016, −4.23750017548348429970413900191, −3.29611693327061008890604053707, −1.97991923554638624858869646204, −0.64035137803010295417494755200, 0, 0.64035137803010295417494755200, 1.97991923554638624858869646204, 3.29611693327061008890604053707, 4.23750017548348429970413900191, 4.81472412016792942942719278016, 5.23226637914084523451683993701, 5.97168839791640756789387605397, 6.67782096623672558544557225427, 7.50397012893604926961555121993

Graph of the $Z$-function along the critical line