Properties

Label 2-9196-1.1-c1-0-139
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.27·3-s − 1.59·5-s + 0.209·7-s + 2.19·9-s − 3.58·13-s − 3.64·15-s + 3.14·17-s − 19-s + 0.476·21-s + 3.39·23-s − 2.44·25-s − 1.82·27-s + 7.67·29-s − 0.788·31-s − 0.333·35-s − 5.39·37-s − 8.18·39-s + 4.42·41-s − 9.42·43-s − 3.50·45-s + 0.507·47-s − 6.95·49-s + 7.16·51-s − 9.23·53-s − 2.27·57-s − 12.2·59-s + 2.39·61-s + ⋯
L(s)  = 1  + 1.31·3-s − 0.714·5-s + 0.0790·7-s + 0.732·9-s − 0.995·13-s − 0.940·15-s + 0.761·17-s − 0.229·19-s + 0.103·21-s + 0.706·23-s − 0.489·25-s − 0.352·27-s + 1.42·29-s − 0.141·31-s − 0.0564·35-s − 0.887·37-s − 1.31·39-s + 0.691·41-s − 1.43·43-s − 0.523·45-s + 0.0739·47-s − 0.993·49-s + 1.00·51-s − 1.26·53-s − 0.301·57-s − 1.59·59-s + 0.307·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2.27T + 3T^{2} \)
5 \( 1 + 1.59T + 5T^{2} \)
7 \( 1 - 0.209T + 7T^{2} \)
13 \( 1 + 3.58T + 13T^{2} \)
17 \( 1 - 3.14T + 17T^{2} \)
23 \( 1 - 3.39T + 23T^{2} \)
29 \( 1 - 7.67T + 29T^{2} \)
31 \( 1 + 0.788T + 31T^{2} \)
37 \( 1 + 5.39T + 37T^{2} \)
41 \( 1 - 4.42T + 41T^{2} \)
43 \( 1 + 9.42T + 43T^{2} \)
47 \( 1 - 0.507T + 47T^{2} \)
53 \( 1 + 9.23T + 53T^{2} \)
59 \( 1 + 12.2T + 59T^{2} \)
61 \( 1 - 2.39T + 61T^{2} \)
67 \( 1 - 8.20T + 67T^{2} \)
71 \( 1 + 0.166T + 71T^{2} \)
73 \( 1 - 4.16T + 73T^{2} \)
79 \( 1 + 11.4T + 79T^{2} \)
83 \( 1 + 7.36T + 83T^{2} \)
89 \( 1 - 3.16T + 89T^{2} \)
97 \( 1 - 6.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54517465609515354353157382103, −6.98732590704447220807494594968, −6.11393669976794675857105919438, −5.05487588839277379686141229968, −4.54186819882585040658309579976, −3.57540371926977132010705112424, −3.13099584568387214834805502450, −2.37348490085986364075785207367, −1.42136042907514209726162402355, 0, 1.42136042907514209726162402355, 2.37348490085986364075785207367, 3.13099584568387214834805502450, 3.57540371926977132010705112424, 4.54186819882585040658309579976, 5.05487588839277379686141229968, 6.11393669976794675857105919438, 6.98732590704447220807494594968, 7.54517465609515354353157382103

Graph of the $Z$-function along the critical line