Properties

Label 2-9196-1.1-c1-0-136
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.295·3-s + 4.07·5-s − 1.80·7-s − 2.91·9-s + 3.73·13-s − 1.20·15-s − 4.31·17-s + 19-s + 0.531·21-s − 4.93·23-s + 11.6·25-s + 1.74·27-s + 8.16·29-s − 8.81·31-s − 7.34·35-s − 8.92·37-s − 1.10·39-s − 7.37·41-s + 5.87·43-s − 11.8·45-s − 9.19·47-s − 3.75·49-s + 1.27·51-s + 7.76·53-s − 0.295·57-s − 6.16·59-s + 4.41·61-s + ⋯
L(s)  = 1  − 0.170·3-s + 1.82·5-s − 0.680·7-s − 0.970·9-s + 1.03·13-s − 0.311·15-s − 1.04·17-s + 0.229·19-s + 0.116·21-s − 1.02·23-s + 2.32·25-s + 0.336·27-s + 1.51·29-s − 1.58·31-s − 1.24·35-s − 1.46·37-s − 0.176·39-s − 1.15·41-s + 0.895·43-s − 1.77·45-s − 1.34·47-s − 0.536·49-s + 0.178·51-s + 1.06·53-s − 0.0391·57-s − 0.802·59-s + 0.565·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 0.295T + 3T^{2} \)
5 \( 1 - 4.07T + 5T^{2} \)
7 \( 1 + 1.80T + 7T^{2} \)
13 \( 1 - 3.73T + 13T^{2} \)
17 \( 1 + 4.31T + 17T^{2} \)
23 \( 1 + 4.93T + 23T^{2} \)
29 \( 1 - 8.16T + 29T^{2} \)
31 \( 1 + 8.81T + 31T^{2} \)
37 \( 1 + 8.92T + 37T^{2} \)
41 \( 1 + 7.37T + 41T^{2} \)
43 \( 1 - 5.87T + 43T^{2} \)
47 \( 1 + 9.19T + 47T^{2} \)
53 \( 1 - 7.76T + 53T^{2} \)
59 \( 1 + 6.16T + 59T^{2} \)
61 \( 1 - 4.41T + 61T^{2} \)
67 \( 1 - 0.555T + 67T^{2} \)
71 \( 1 - 1.15T + 71T^{2} \)
73 \( 1 - 0.509T + 73T^{2} \)
79 \( 1 + 8.03T + 79T^{2} \)
83 \( 1 + 6.29T + 83T^{2} \)
89 \( 1 + 6.85T + 89T^{2} \)
97 \( 1 + 2.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.04548174716235541107820961139, −6.51232004696830219312866400341, −6.02170609674803808460675237289, −5.52583004616327306018644208640, −4.83144171154273973758219358900, −3.68354291154793177970639846891, −2.93651609799288764007663444141, −2.15932241430727932970281575733, −1.40875957510422810907271841970, 0, 1.40875957510422810907271841970, 2.15932241430727932970281575733, 2.93651609799288764007663444141, 3.68354291154793177970639846891, 4.83144171154273973758219358900, 5.52583004616327306018644208640, 6.02170609674803808460675237289, 6.51232004696830219312866400341, 7.04548174716235541107820961139

Graph of the $Z$-function along the critical line