Properties

Label 2-9196-1.1-c1-0-133
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.564·3-s + 1.37·5-s + 0.329·7-s − 2.68·9-s − 2.14·13-s + 0.774·15-s + 2.03·17-s − 19-s + 0.185·21-s − 0.737·23-s − 3.11·25-s − 3.20·27-s + 7.92·29-s + 3.78·31-s + 0.452·35-s + 0.421·37-s − 1.20·39-s − 4.47·41-s − 7.32·43-s − 3.67·45-s − 5.65·47-s − 6.89·49-s + 1.15·51-s + 11.6·53-s − 0.564·57-s + 10.2·59-s − 14.5·61-s + ⋯
L(s)  = 1  + 0.325·3-s + 0.613·5-s + 0.124·7-s − 0.893·9-s − 0.593·13-s + 0.200·15-s + 0.494·17-s − 0.229·19-s + 0.0405·21-s − 0.153·23-s − 0.623·25-s − 0.617·27-s + 1.47·29-s + 0.679·31-s + 0.0764·35-s + 0.0692·37-s − 0.193·39-s − 0.699·41-s − 1.11·43-s − 0.548·45-s − 0.824·47-s − 0.984·49-s + 0.161·51-s + 1.60·53-s − 0.0747·57-s + 1.32·59-s − 1.86·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 0.564T + 3T^{2} \)
5 \( 1 - 1.37T + 5T^{2} \)
7 \( 1 - 0.329T + 7T^{2} \)
13 \( 1 + 2.14T + 13T^{2} \)
17 \( 1 - 2.03T + 17T^{2} \)
23 \( 1 + 0.737T + 23T^{2} \)
29 \( 1 - 7.92T + 29T^{2} \)
31 \( 1 - 3.78T + 31T^{2} \)
37 \( 1 - 0.421T + 37T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 + 7.32T + 43T^{2} \)
47 \( 1 + 5.65T + 47T^{2} \)
53 \( 1 - 11.6T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 + 14.5T + 61T^{2} \)
67 \( 1 + 11.1T + 67T^{2} \)
71 \( 1 - 9.51T + 71T^{2} \)
73 \( 1 + 10.3T + 73T^{2} \)
79 \( 1 + 5.94T + 79T^{2} \)
83 \( 1 - 6.92T + 83T^{2} \)
89 \( 1 - 15.7T + 89T^{2} \)
97 \( 1 - 10.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48899311731376583343917713171, −6.54459642259861327805871947217, −6.10142336831714520080705292714, −5.26130771598868376800386404157, −4.75359076084669694377706745538, −3.71686153319973343015832880074, −2.91683009372135575609406667836, −2.30719668433841760238144389191, −1.35799861380384137452084794463, 0, 1.35799861380384137452084794463, 2.30719668433841760238144389191, 2.91683009372135575609406667836, 3.71686153319973343015832880074, 4.75359076084669694377706745538, 5.26130771598868376800386404157, 6.10142336831714520080705292714, 6.54459642259861327805871947217, 7.48899311731376583343917713171

Graph of the $Z$-function along the critical line