Properties

Label 2-9196-1.1-c1-0-120
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.99·3-s + 2.83·5-s + 3.85·7-s + 0.991·9-s − 6.23·13-s − 5.65·15-s − 4.97·17-s + 19-s − 7.69·21-s − 6.56·23-s + 3.01·25-s + 4.01·27-s + 3.54·29-s + 6.81·31-s + 10.8·35-s − 5.04·37-s + 12.4·39-s + 7.13·41-s + 11.4·43-s + 2.80·45-s − 9.88·47-s + 7.82·49-s + 9.94·51-s + 3.38·53-s − 1.99·57-s − 6.79·59-s − 13.7·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.26·5-s + 1.45·7-s + 0.330·9-s − 1.72·13-s − 1.46·15-s − 1.20·17-s + 0.229·19-s − 1.67·21-s − 1.36·23-s + 0.602·25-s + 0.772·27-s + 0.657·29-s + 1.22·31-s + 1.84·35-s − 0.830·37-s + 1.99·39-s + 1.11·41-s + 1.75·43-s + 0.418·45-s − 1.44·47-s + 1.11·49-s + 1.39·51-s + 0.464·53-s − 0.264·57-s − 0.884·59-s − 1.75·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 1.99T + 3T^{2} \)
5 \( 1 - 2.83T + 5T^{2} \)
7 \( 1 - 3.85T + 7T^{2} \)
13 \( 1 + 6.23T + 13T^{2} \)
17 \( 1 + 4.97T + 17T^{2} \)
23 \( 1 + 6.56T + 23T^{2} \)
29 \( 1 - 3.54T + 29T^{2} \)
31 \( 1 - 6.81T + 31T^{2} \)
37 \( 1 + 5.04T + 37T^{2} \)
41 \( 1 - 7.13T + 41T^{2} \)
43 \( 1 - 11.4T + 43T^{2} \)
47 \( 1 + 9.88T + 47T^{2} \)
53 \( 1 - 3.38T + 53T^{2} \)
59 \( 1 + 6.79T + 59T^{2} \)
61 \( 1 + 13.7T + 61T^{2} \)
67 \( 1 - 9.47T + 67T^{2} \)
71 \( 1 + 8.56T + 71T^{2} \)
73 \( 1 - 2.78T + 73T^{2} \)
79 \( 1 - 0.163T + 79T^{2} \)
83 \( 1 + 7.82T + 83T^{2} \)
89 \( 1 + 3.81T + 89T^{2} \)
97 \( 1 - 9.00T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34735468373568826991414199552, −6.40500059740371313349983288649, −6.04027099033104632230853450986, −5.24794578363781510636215723363, −4.78873534197250652218163403656, −4.33494454958136065139257132173, −2.63334097959303876725016321932, −2.15385637570297665444390376466, −1.26236629297757188849412776875, 0, 1.26236629297757188849412776875, 2.15385637570297665444390376466, 2.63334097959303876725016321932, 4.33494454958136065139257132173, 4.78873534197250652218163403656, 5.24794578363781510636215723363, 6.04027099033104632230853450986, 6.40500059740371313349983288649, 7.34735468373568826991414199552

Graph of the $Z$-function along the critical line