Properties

Label 2-9196-1.1-c1-0-106
Degree $2$
Conductor $9196$
Sign $-1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.99·3-s + 2.83·5-s − 3.85·7-s + 0.991·9-s + 6.23·13-s − 5.65·15-s + 4.97·17-s − 19-s + 7.69·21-s − 6.56·23-s + 3.01·25-s + 4.01·27-s − 3.54·29-s + 6.81·31-s − 10.8·35-s − 5.04·37-s − 12.4·39-s − 7.13·41-s − 11.4·43-s + 2.80·45-s − 9.88·47-s + 7.82·49-s − 9.94·51-s + 3.38·53-s + 1.99·57-s − 6.79·59-s + 13.7·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.26·5-s − 1.45·7-s + 0.330·9-s + 1.72·13-s − 1.46·15-s + 1.20·17-s − 0.229·19-s + 1.67·21-s − 1.36·23-s + 0.602·25-s + 0.772·27-s − 0.657·29-s + 1.22·31-s − 1.84·35-s − 0.830·37-s − 1.99·39-s − 1.11·41-s − 1.75·43-s + 0.418·45-s − 1.44·47-s + 1.11·49-s − 1.39·51-s + 0.464·53-s + 0.264·57-s − 0.884·59-s + 1.75·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 1.99T + 3T^{2} \)
5 \( 1 - 2.83T + 5T^{2} \)
7 \( 1 + 3.85T + 7T^{2} \)
13 \( 1 - 6.23T + 13T^{2} \)
17 \( 1 - 4.97T + 17T^{2} \)
23 \( 1 + 6.56T + 23T^{2} \)
29 \( 1 + 3.54T + 29T^{2} \)
31 \( 1 - 6.81T + 31T^{2} \)
37 \( 1 + 5.04T + 37T^{2} \)
41 \( 1 + 7.13T + 41T^{2} \)
43 \( 1 + 11.4T + 43T^{2} \)
47 \( 1 + 9.88T + 47T^{2} \)
53 \( 1 - 3.38T + 53T^{2} \)
59 \( 1 + 6.79T + 59T^{2} \)
61 \( 1 - 13.7T + 61T^{2} \)
67 \( 1 - 9.47T + 67T^{2} \)
71 \( 1 + 8.56T + 71T^{2} \)
73 \( 1 + 2.78T + 73T^{2} \)
79 \( 1 + 0.163T + 79T^{2} \)
83 \( 1 - 7.82T + 83T^{2} \)
89 \( 1 + 3.81T + 89T^{2} \)
97 \( 1 - 9.00T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.94626495159125228114828501532, −6.39297656962125884359015277503, −6.04888693265127503151582447982, −5.63269964450716861081953392920, −4.87915277985790797932294048992, −3.63000616733655471488011898862, −3.25483146739568094249798004762, −2.00770855008546560525665609846, −1.13588015633752938544850691829, 0, 1.13588015633752938544850691829, 2.00770855008546560525665609846, 3.25483146739568094249798004762, 3.63000616733655471488011898862, 4.87915277985790797932294048992, 5.63269964450716861081953392920, 6.04888693265127503151582447982, 6.39297656962125884359015277503, 6.94626495159125228114828501532

Graph of the $Z$-function along the critical line