Properties

Label 2-9196-1.1-c1-0-10
Degree $2$
Conductor $9196$
Sign $1$
Analytic cond. $73.4304$
Root an. cond. $8.56915$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.42·3-s − 2.11·5-s − 3.55·7-s − 0.970·9-s − 4.05·13-s − 3.00·15-s − 4.39·17-s + 19-s − 5.06·21-s − 8.50·23-s − 0.545·25-s − 5.65·27-s + 8.32·29-s − 0.583·31-s + 7.51·35-s − 2.92·37-s − 5.77·39-s + 0.892·41-s + 8.63·43-s + 2.04·45-s − 0.756·47-s + 5.66·49-s − 6.26·51-s + 1.53·53-s + 1.42·57-s − 13.9·59-s − 14.9·61-s + ⋯
L(s)  = 1  + 0.822·3-s − 0.943·5-s − 1.34·7-s − 0.323·9-s − 1.12·13-s − 0.776·15-s − 1.06·17-s + 0.229·19-s − 1.10·21-s − 1.77·23-s − 0.109·25-s − 1.08·27-s + 1.54·29-s − 0.104·31-s + 1.26·35-s − 0.481·37-s − 0.925·39-s + 0.139·41-s + 1.31·43-s + 0.305·45-s − 0.110·47-s + 0.809·49-s − 0.877·51-s + 0.210·53-s + 0.188·57-s − 1.81·59-s − 1.90·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9196\)    =    \(2^{2} \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(73.4304\)
Root analytic conductor: \(8.56915\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9196,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4669259342\)
\(L(\frac12)\) \(\approx\) \(0.4669259342\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 1.42T + 3T^{2} \)
5 \( 1 + 2.11T + 5T^{2} \)
7 \( 1 + 3.55T + 7T^{2} \)
13 \( 1 + 4.05T + 13T^{2} \)
17 \( 1 + 4.39T + 17T^{2} \)
23 \( 1 + 8.50T + 23T^{2} \)
29 \( 1 - 8.32T + 29T^{2} \)
31 \( 1 + 0.583T + 31T^{2} \)
37 \( 1 + 2.92T + 37T^{2} \)
41 \( 1 - 0.892T + 41T^{2} \)
43 \( 1 - 8.63T + 43T^{2} \)
47 \( 1 + 0.756T + 47T^{2} \)
53 \( 1 - 1.53T + 53T^{2} \)
59 \( 1 + 13.9T + 59T^{2} \)
61 \( 1 + 14.9T + 61T^{2} \)
67 \( 1 - 1.09T + 67T^{2} \)
71 \( 1 + 4.46T + 71T^{2} \)
73 \( 1 + 11.4T + 73T^{2} \)
79 \( 1 - 14.7T + 79T^{2} \)
83 \( 1 - 5.34T + 83T^{2} \)
89 \( 1 - 1.99T + 89T^{2} \)
97 \( 1 - 2.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77106535362319442281670712309, −7.21276934558401348935293958676, −6.37114312451804468566755309732, −5.87702222185157990655507363733, −4.67347318226854759359781876396, −4.12286481131765205172026396811, −3.32387809400301313167032625188, −2.78745722260548417018828984855, −2.03987390820856151826422156519, −0.28857198269905006721847376186, 0.28857198269905006721847376186, 2.03987390820856151826422156519, 2.78745722260548417018828984855, 3.32387809400301313167032625188, 4.12286481131765205172026396811, 4.67347318226854759359781876396, 5.87702222185157990655507363733, 6.37114312451804468566755309732, 7.21276934558401348935293958676, 7.77106535362319442281670712309

Graph of the $Z$-function along the critical line