Properties

Label 2-91728-1.1-c1-0-99
Degree $2$
Conductor $91728$
Sign $-1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 3·11-s + 13-s + 17-s − 3·19-s − 25-s − 3·29-s − 4·31-s − 2·37-s + 2·41-s − 6·43-s + 9·47-s − 53-s − 6·55-s − 11·59-s − 11·61-s − 2·65-s + 7·67-s + 15·71-s + 12·73-s − 2·79-s − 2·85-s + 10·89-s + 6·95-s + 12·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.904·11-s + 0.277·13-s + 0.242·17-s − 0.688·19-s − 1/5·25-s − 0.557·29-s − 0.718·31-s − 0.328·37-s + 0.312·41-s − 0.914·43-s + 1.31·47-s − 0.137·53-s − 0.809·55-s − 1.43·59-s − 1.40·61-s − 0.248·65-s + 0.855·67-s + 1.78·71-s + 1.40·73-s − 0.225·79-s − 0.216·85-s + 1.05·89-s + 0.615·95-s + 1.21·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09200377760903, −13.72782684296043, −12.97629307579325, −12.59401241852295, −12.02992763689183, −11.74976062232457, −11.08885101536511, −10.78929292141432, −10.23285191621118, −9.354399946808885, −9.239555794050744, −8.589043745245570, −7.871627017821642, −7.766259964004794, −6.927015087035190, −6.560379725786994, −5.949114882114035, −5.346119922436652, −4.666339220671715, −4.065919544989392, −3.678815882319450, −3.188352833883908, −2.227854036737112, −1.654541962859183, −0.8095137584680214, 0, 0.8095137584680214, 1.654541962859183, 2.227854036737112, 3.188352833883908, 3.678815882319450, 4.065919544989392, 4.666339220671715, 5.346119922436652, 5.949114882114035, 6.560379725786994, 6.927015087035190, 7.766259964004794, 7.871627017821642, 8.589043745245570, 9.239555794050744, 9.354399946808885, 10.23285191621118, 10.78929292141432, 11.08885101536511, 11.74976062232457, 12.02992763689183, 12.59401241852295, 12.97629307579325, 13.72782684296043, 14.09200377760903

Graph of the $Z$-function along the critical line